246 resultados para Bifocal spectacles
Resumo:
Objective: To determine whether bifocal and prismatic bifocal spectacles could control myopia in children with high rates of myopic progression. ---------- Methods: This was a randomized controlled clinical trial. One hundred thirty-five (73 girls and 62 boys) myopic Chinese Canadian children (myopia of 1.00 diopters [D]) with myopic progression of at least 0.50 D in the preceding year were randomly assigned to 1 of 3 treatments: (1) single-vision lenses (n = 41), (2) +1.50-D executive bifocals (n = 48), or (3) +1.50-D executive bifocals with a 3–prism diopters base-in prism in the near segment of each lens (n = 46). ---------- Main Outcome Measures: Myopic progression measured by an automated refractor under cycloplegia and increase in axial length (secondary) measured by ultrasonography at 6-month intervals for 24 months. Only the data of the right eye were used. ---------- Results: Of the 135 children (mean age, 10.29 years [SE, 0.15 years]; mean visual acuity, –3.08 D [SE, 0.10 D]), 131 (97%) completed the trial after 24 months. Myopic progression averaged –1.55 D (SE, 0.12 D) for those who wore single-vision lenses, –0.96 D (SE, 0.09 D) for those who wore bifocals, and –0.70 D (SE, 0.10 D) for those who wore prismatic bifocals. Axial length increased an average of 0.62 mm (SE, 0.04 mm), 0.41 mm (SE, 0.04 mm), and 0.41 mm (SE, 0.05 mm), respectively. The treatment effect of bifocals (0.59 D) and prismatic bifocals (0.85 D) was significant (P < .001) and both bifocal groups had less axial elongation (0.21 mm) than the single-vision lens group (P < .001). ---------- Conclusions: Bifocal lenses can moderately slow myopic progression in children with high rates of progression after 24 months.
Resumo:
Importance Myopia is a significant public health problem, making it important to determine whether a bifocal spectacle treatment involving near prism slows myopia progression in children. Objective To determine whether bifocal and prismatic bifocal spectacles control myopia in children with high rates of myopia progression and to assess whether the treatment effect is dependent on the lag of accommodation and/or near phoria status. Design, Setting, and Participants This 3-year randomized clinical trial was conducted in a private practice. A total of 135 (73 female and 62 male) Chinese-Canadian children (aged 8-13 years; mean [SE] age, 10.29 [0.15] years; mean [SE] myopia, −3.08 [0.10] D) with myopia progression of at least 0.50 D in the preceding year were randomly assigned to 1 of 3 treatments. A total of 128 (94.8%) completed the trial. Interventions Single-vision lenses (control, n = 41), +1.50-D executive bifocals (n = 48), and +1.50-D executive bifocals with 3-Δ base-in prism in the near segment of each lens (n = 46). Main Outcomes and Measures Myopia progression (primary) measured using an automated refractor following cycloplegia and increase in axial length (secondary) measured using ultrasonography at intervals of 6 months for 36 months. Results Myopia progression over 3 years was an average (SE) of −2.06 (0.13) D for the single-vision lens group, −1.25 (0.10) D for the bifocal group, and −1.01 (0.13) D for the prismatic bifocal group. Axial length increased an average (SE) of 0.82 (0.05) mm, 0.57 (0.07) mm, and 0.54 (0.06) mm, respectively. The treatment effect of bifocals (0.81 D) and prismatic bifocals (1.05 D) was significant (P < .001). Both bifocal groups had less axial elongation (0.25 mm and 0.28 mm, respectively) than the single-vision lens group (P < .001). For children with high lags of accommodation (≥1.01 D), the treatment effect of both bifocals and prismatic bifocals was similar (1.1 D) (P < .001). For children with low lags (<1.01 D), the treatment effect of prismatic bifocals (0.99 D) was greater than of bifocals (0.50 D) (P = .03). The treatment effect of both bifocals and prismatic bifocals was independent of the near phoria status. Conclusions and Relevance Bifocal spectacles can slow myopia progression in children with an annual progression rate of at least 0.50 D after 3 years. These results suggest that prismatic bifocals are more effective for myopic children with low lags of accommodation.
Resumo:
Presbyopia affects individuals from the age of 45 years onwards, resulting in difficulty in accurately focusing on near objects. There are many optical corrections available including spectacles or contact lenses that are designed to enable presbyopes to see clearly at both far and near distances. However, presbyopic vision corrections also disturb aspects of visual function under certain circumstances. The impact of these changes on activities of daily living such as driving are, however, poorly understood. Therefore, the aim of this study was to determine which aspects of driving performance might be affected by wearing different types of presbyopic vision corrections. In order to achieve this aim, three experiments were undertaken. The first experiment involved administration of a questionnaire to compare the subjective driving difficulties experienced when wearing a range of common presbyopic contact lens and spectacle corrections. The questionnaire was developed and piloted, and included a series of items regarding difficulties experienced while driving under day and night-time conditions. Two hundred and fifty five presbyopic patients responded to the questionnaire and were categorised into five groups, including those wearing no vision correction for driving (n = 50), bifocal spectacles (BIF, n = 54), progressive addition lenses spectacles (PAL, n = 50), monovision (MV, n = 53) and multifocal contact lenses (MTF CL, n = 48). Overall, ratings of satisfaction during daytime driving were relatively high for all correction types. However, MV and MTF CL wearers were significantly less satisfied with aspects of their vision during night-time than daytime driving, particularly with regard to disturbances from glare and haloes. Progressive addition lens wearers noticed more distortion of peripheral vision, while BIF wearers reported more difficulties with tasks requiring changes in focus and those who wore no vision correction for driving reported problems with intermediate and near tasks. Overall, the mean level of satisfaction for daytime driving was quite high for all of the groups (over 80%), with the BIF wearers being the least satisfied with their vision for driving. Conversely, at night, MTF CL wearers expressed the least satisfaction. Research into eye and head movements has become increasingly of interest in driving research as it provides a means of understanding how the driver responds to visual stimuli in traffic. Previous studies have found that wearing PAL can affect eye and head movement performance resulting in slower eye movement velocities and longer times to stabilize the gaze for fixation. These changes in eye and head movement patterns may have implications for driving safety, given that the visual tasks for driving include a range of dynamic search tasks. Therefore, the second study was designed to investigate the influence of different presbyopic corrections on driving-related eye and head movements under standardized laboratory-based conditions. Twenty presbyopes (mean age: 56.1 ± 5.7 years) who had no experience of wearing presbyopic vision corrections, apart from single vision reading spectacles, were recruited. Each participant wore five different types of vision correction: single vision distance lenses (SV), PAL, BIF, MV and MTF CL. For each visual condition, participants were required to view videotape recordings of traffic scenes, track a reference vehicle and identify a series of peripherally presented targets while their eye and head movements were recorded using the faceLAB® eye and head tracking system. Digital numerical display panels were also included as near visual stimuli (simulating the visual displays of a vehicle speedometer and radio). The results demonstrated that the path length of eye movements while viewing and responding to driving-related traffic scenes was significantly longer when wearing BIF and PAL than MV and MTF CL. The path length of head movements was greater with SV, BIF and PAL than MV and MTF CL. Target recognition was less accurate when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze, regardless of vision correction type. The third experiment aimed to investigate the real world driving performance of presbyopes while wearing different vision corrections measured on a closed-road circuit at night-time. Eye movements were recorded using the ASL Mobile Eye, eye tracking system (as the faceLAB® system proved to be impractical for use outside of the laboratory). Eleven participants (mean age: 57.25 ± 5.78 years) were fitted with four types of prescribed vision corrections (SV, PAL, MV and MTF CL). The measures of driving performance on the closed-road circuit included distance to sign recognition, near target recognition, peripheral light-emitting-diode (LED) recognition, low contrast road hazards recognition and avoidance, recognition of all the road signs, time to complete the course, and driving behaviours such as braking, accelerating, and cornering. The results demonstrated that driving performance at night was most affected by MTF CL compared to PAL, resulting in shorter distances to read signs, slower driving speeds, and longer times spent fixating road signs. Monovision resulted in worse performance in the task of distance to read a signs compared to SV and PAL. The SV condition resulted in significantly more errors made in interpreting information from in-vehicle devices, despite spending longer time fixating on these devices. Progressive addition lenses were ranked as the most preferred vision correction, while MTF CL were the least preferred vision correction for night-time driving. This thesis addressed the research question of how presbyopic vision corrections affect driving performance and the results of the three experiments demonstrated that the different types of presbyopic vision corrections (e.g. BIF, PAL, MV and MTF CL) can affect driving performance in different ways. Distance-related driving tasks showed reduced performance with MV and MTF CL, while tasks which involved viewing in-vehicle devices were significantly hampered by wearing SV corrections. Wearing spectacles such as SV, BIF and PAL induced greater eye and head movements in the simulated driving condition, however this did not directly translate to impaired performance on the closed- road circuit tasks. These findings are important for understanding the influence of presbyopic vision corrections on vision under real world driving conditions. They will also assist the eye care practitioner to understand and convey to patients the potential driving difficulties associated with wearing certain types of presbyopic vision corrections and accordingly to support them in the process of matching patients to optical corrections which meet their visual needs.
Resumo:
Purpose: To investigate whether wearing different presbyopic vision corrections alters the pattern of eye and head movements when viewing and responding to driving-related traffic scenes. Methods: Participants included 20 presbyopes (mean age: 56.1 ± 5.7 years) who had no experience of wearing presbyopic vision corrections, apart from single vision (SV) reading spectacles. Each participant wore five different vision corrections: distance SV lenses, progressive addition spectacle lenses (PAL), bifocal spectacle lenses (BIF), monovision (MV) and multifocal contact lenses (MTF CL). For each visual condition, participants were required to view videotape recordings of traffic scenes, track a reference vehicle, and identify a series of peripherally presented targets. Digital numerical display panels were also included as near visual stimuli (simulating the visual displays of a vehicle speedometer and radio). Eye and head movements were measured, and the accuracy of target recognition was also recorded. Results: The path length of eye movements while viewing and responding to driving-related traffic scenes was significantly longer when wearing BIF and PAL than MV and MTF CL (both p ≤ 0.013). The path length of head movements was greater with SV, BIF, and PAL than MV and MTF CL (all p < 0.001). Target recognition and brake response times were not significantly affected by vision correction, whereas target recognition was less accurate when the near stimulus was located at eccentricities inferiorly and to the left, rather than directly below the primary position of gaze (p = 0.008), regardless of vision correction. Conclusions: Different presbyopic vision corrections alter eye and head movement patterns. The longer path length of eye and head movements and greater number of saccades associated with the spectacle presbyopic corrections may affect some aspects of driving performance.
Resumo:
Objectives: As the population ages, more people will be wearing presbyopic vision corrections when driving. However, little is known about the impact of these vision corrections on driving performance. This study aimed to determine the subjective driving difficulties experienced when wearing a range of common presbyopic contact lens and spectacle corrections.----- Methods: A questionnaire was developed and piloted that included a series of items regarding difficulties experienced while driving under daytime and night-time conditions (rated on five-point and seven-point Likert scales). Participants included 255 presbyopic patients recruited through local optometry practices. Participants were categorized into five age-matched groups; including those wearing no vision correction for driving (n = 50), bifocal spectacles (n = 54), progressive spectacles (n = 50), monovision contact lenses (n = 53), and multifocal contact lenses (n = 48).----- Results: Overall, ratings of satisfaction during daytime driving were relatively high for all correction types. However, multifocal contact lens wearers were significantly less satisfied with aspects of their vision during night-time than daytime driving, particularly regarding disturbances from glare and haloes. Progressive spectacle lens wearers noticed more distortion of peripheral vision, whereas bifocal spectacle wearers reported more difficulties with tasks requiring changes of focus and those who wore no optical correction for driving reported problems with intermediate and near tasks. Overall, satisfaction was significantly higher for progressive spectacles than bifocal spectacles for driving.----- Conclusions: Subjective visual experiences of different presbyopic vision corrections when driving vary depending on the vision tasks and lighting level. Eye-care practitioners should be aware of the driving-related difficulties experienced with each vision correction type and the need to select corrective types that match the driving needs of their patients.
Resumo:
Purpose: To investigate whether wearing different presbyopic refractive corrections alters the pattern of eye and head movements when searching for dynamic targets in driving-related traffic scenes. Methods: Eye and head movements of 20 presbyopes (mean age = 56.2 ± 5.7 years), who had no experience of wearing presbyopic corrections or were unadapted wearers were recorded using the faceLABTM eye and head tracker, while wearing five different corrections: single vision lenses (SV), progressive addition lenses (PALs), bifocal spectacles (BIF), monovision and multifocal contact lenses (MTF CLs) in random order (within-subjects comparison). Recorded traffic scenes of suburban roads and expressways with edited targets were viewed as dynamic stimuli. Results: The magnitude of eye and head movements was significantly greater for SV, BIF and PALs than monovision and MTF CLs (p < 0.001). In addition, BIF wear led to more eye movements than PAL wear (p = 0.017), while PAL wear resulted in greater head movements than SV wear (p = 0.018). The ratio of eye to head movement was smaller for PALs than all other groups (p < 0.001). The number of saccades made to fixate a target was significantly higher for BIF and PALs than monovision or MTF CLs (p < 0.05). Conclusions: Different presbyopic corrections can alter eye and head movement patterns. Wearing spectacles such as BIF and PALs produced relatively greater eye and head movements and saccades when viewing dynamic targets. The impact of these changes in eye and head movement patterns may have implications for driving performance under real world driving conditions.
Resumo:
The year so far has been a slow start for many businesses, but at least we have not seen the collapse of as many businesses that we were seeing around two years ago. We are, however, still well and truly in the midst of a global recession. Interest rates are still at an all time low, UK house prices seem to be showing little signs of increase (except in London where everyone still seems to want to live!) and for the ardent shopper there are bargains to be had everywhere. It seems strange that prices on the high street do not seem to have increased in over ten years. Mobile phones, DVD players even furniture seems to be cheaper than they used to be. Whist much of this is down to cheaper manufacturing and the rest could probably be explained by competition within the market place. Does this mean that quality suffered too? Now that we live in a world when if a television is not working it is thrown away and replaced. There was a time when you would take it to some odd looking man that your father would know who could fix it for you. (I remember our local television fix-it man, with his thick rimmed bifocal spectacles and a poor comb-over; he had cardboard boxes full of resistors and electrical wires on the floor of his front room that smelt of soldering irons!) Is this consumerism at an extreme or has this move to disposability made us a better society? Before you think these are just ramblings there is a point to this. According to latest global figures of contact lens sales the vast majority of contact lenses fitted around the world are daily, fortnightly or monthly disposable hydrogel lenses. Certainly in the UK over 90% of lenses are disposable (with daily disposables being the most popular, having a market share of over 50%). This begs the question – is this a good thing? Maybe more importantly, do our patients benefit? I think it is worth reminding ourselves why we went down the disposability route with contact lenses in the first place, and unlike electrical goods it was not just so we did not have to take them for repair! There are the obvious advantages of overcoming problems of breakage and tearing of lenses and the lens deterioration with age. The lenses are less likely to be contaminated and the disinfection is either easier or not required at all (in the case of daily disposable lenses). Probably the landmark paper in the field was the work more commonly known as the ‘Gothenburg Study’. The paper, entitled ‘Strategies for minimizing the Ocular Effects of Extended Contact Lens Wear’ published in the American Journal of Optometry in 1987 (volume 64, pages 781-789) by Holden, B.A., Swarbrick, H.A., Sweeney, D.F., Ho, A., Efron, N., Vannas, A., Nilsson, K.T. They suggested that contact lens induced ocular effects were minimised by: •More frequently removed contact lenses •More regularly replaced contact lenses •A lens that was more mobile on the eye (to allow better removal of debris) •Better flow of oxygen through the lens All of these issues seem to be solved with disposability, except the oxygen issue which has been solved with the advent of silicone hydrogel materials. Newer issues have arisen and most can be solved in practice by the eye care practitioner. The emphasis now seems to be on making lenses more comfortable. The problems of contact lens related dry eyes symptoms seem to be ever present and maybe this would explain why in the UK we have a pretty constant contact lens wearing population of just over three million but every year we have over a million dropouts! That means we must be attracting a million new wearers every year (well done to the marketing departments!) but we are also losing a million wearers every year. We certainly are not losing them all to the refractive surgery clinics. We know that almost anyone can now wear a contact lens and we know that some lenses will solve problems of sharper vision, some will aid comfort, and some will be useful for patients with dry eyes. So if we still have so many dropouts then we must be doing something wrong! I think the take home message has to be ‘must try harder’! I must end with an apology for two errors in my editorial of issue 1 earlier this year. Firstly there was a typo in the first sentence; I meant to state that it was 40 years not 30 years since the first commercial soft lens was available in the UK. The second error was one that I was unaware of until colleagues Geoff Wilson (Birmingham, UK) and Tim Bowden (London, UK) wrote to me to explain that soft lenses were actually available in the UK before 1971 (please see their ‘Letters to the Editor’ in this issue). I am grateful to both of them for correcting the mistake.
Resumo:
This research investigated underlying issues that were critical to the success of the bifocal trial and comprised of three studies. The first study evaluated if Chinese-Canadian children were suitable subjects for the bifocal trial. The high prevalence of myopia in Chinese children suggests that genetic input plays a role in myopia development, but the rapid increase in prevalence over the last few decades indicates environmental factors are also important. Since this bifocal trial was conducted in Canada, this work aimed to determine whether Chinese children who had migrated to Canada would still have high myopia prevalence and a high rate of myopia progression. The second study determined the optimal bifocal lens power for myopia treatment and the effect of incorporating base-in prism into the bifocal. In the majority of published myopia control studies, the power of the prescribed near addition was usually predetermined in the belief that the near addition would always help to improve the near focus. In fact, the effect of near addition on the accommodative error might be quite different even for individuals in which the same magnitude of accommodation lag had been measured. Therefore, this work was necessary to guide the selection of bifocal and prism powers most suitable for the subsequent bifocal trial. The third study, the ultimate goal of this research, was to conduct a longitudinal clinical trial to determine if bifocals and prismatic bifocals could control myopia progression in children.
Resumo:
Purpose: To study safety of children’s glasses in rural China, where fear that glasses harm vision is an important barrier for families and policy-makers. Design: Exploratory analysis from a cluster-randomized, investigator-masked, controlled trial.Methods: Among primary schools (n=252) in western China, children were randomized by school to one of three interventions: free glasses provided in class, vouchers for free glasses at a local facility or glasses prescriptions only (Control group). The main outcome of this analysis is uncorrected visual acuity after 8 months, adjusted for baseline acuity.Results: Among 19,934 children randomly selected for screening, 5852 myopic (spherical equivalent refractive error <= -0.5 D) eyes of 3001 children (14.7%, mean age 10.5 years) had VA <= 6/12 without glasses correctable to > 6/12 with glasses, and were eligible. Among these, 1903 (32.5%), 1798 (30.7%), and 2151 (36.8%) were randomized to Control, Voucher and Free Glasses respectively. Intention-to-treat analyses were performed on all 1831 (96.2%), 1699 (94.5%), and 2007 (93.3%) eyes of children with follow-up in Control, Voucher and Free Glasses groups. Final visual acuity for eyes of children in the treatment groups (Free Glasses and Voucher) was significantly better than for Control children, adjusting only for baseline visual acuity (difference of 0.023 logMAR units [0.23 vision chart lines, 95% CI: 0.03, 0.43]) or for other baseline factors as well (0.025 logMAR units [0.25 lines, 95% CI 0.04, 0.45]). Conclusion: We found no evidence that spectacles promote decline in uncorrected vision with aging among children.