946 resultados para Biased correlated random walk


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotaxis, the phenomenon in which cells move in response to extracellular chemical gradients, plays a prominent role in the mammalian immune response. During this process, a number of chemical signals, called chemoattractants, are produced at or proximal to sites of infection and diffuse into the surrounding tissue. Immune cells sense these chemoattractants and move in the direction where their concentration is greatest, thereby locating the source of attractants and their associated targets. Leading the assault against new infections is a specialized class of leukocytes (white blood cells) known as neutrophils, which normally circulate in the bloodstream. Upon activation, these cells emigrate out of the vasculature and navigate through interstitial tissues toward target sites. There they phagocytose bacteria and release a number of proteases and reactive oxygen intermediates with antimicrobial activity. Neutrophils recruited by infected tissue in vivo are likely confronted by complex chemical environments consisting of a number of different chemoattractant species. These signals may include end target chemicals produced in the vicinity of the infectious agents, and endogenous chemicals released by local host tissues during the inflammatory response. To successfully locate their pathogenic targets within these chemically diverse and heterogeneous settings, activated neutrophils must be capable of distinguishing between the different signals and employing some sort of logic to prioritize among them. This ability to simultaneously process and interpret mulitple signals is thought to be essential for efficient navigation of the cells to target areas. In particular, aberrant cell signaling and defects in this functionality are known to contribute to medical conditions such as chronic inflammation, asthma and rheumatoid arthritis. To elucidate the biomolecular mechanisms underlying the neutrophil response to different chemoattractants, a number of efforts have been made toward understanding how cells respond to different combinations of chemicals. Most notably, recent investigations have shown that in the presence of both end target and endogenous chemoattractant variants, the cells migrate preferentially toward the former type, even in very low relative concentrations of the latter. Interestingly, however, when the cells are exposed to two different endogenous chemical species, they exhibit a combinatorial response in which distant sources are favored over proximal sources. Some additional results also suggest that cells located between two endogenous chemoattractant sources will respond to the vectorial sum of the combined gradients. In the long run, this peculiar behavior could result in oscillatory cell trajectories between the two sources. To further explore the significance of these and other observations, particularly in the context of physiological conditions, we introduce in this work a simplified phenomenological model of neutrophil chemotaxis. In particular, this model incorporates a trait commonly known as directional persistence - the tendency for migrating neutrophils to continue moving in the same direction (much like momentum) - while also accounting for the dose-response characteristics of cells to different chemical species. Simulations based on this model suggest that the efficiency of cell migration in complex chemical environments depends significantly on the degree of directional persistence. In particular, with appropriate values for this parameter, cells can improve their odds of locating end targets by drifting through a network of attractant sources in a loosely-guided fashion. This corroborates the prediction that neutrophils randomly migrate from one chemoattractant source to the next while searching for their end targets. These cells may thus use persistence as a general mechanism to avoid being trapped near sources of endogenous chemoattractants - the mathematical analogue of local maxima in a global optimization problem. Moreover, this general foraging strategy may apply to other biological processes involving multiple signals and long-range navigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a Random Walk in Random Environment (RWRE) moving in an i.i.d. random field of obstacles. When the particle hits an obstacle, it disappears with a positive probability. We obtain quenched and annealed bounds on the tails of the survival time in the general d-dimensional case. We then consider a simplified one-dimensional model (where transition probabilities and obstacles are independent and the RWRE only moves to neighbour sites), and obtain finer results for the tail of the survival time. In addition, we study also the ""mixed"" probability measures (quenched with respect to the obstacles and annealed with respect to the transition probabilities and vice-versa) and give results for tails of the survival time with respect to these probability measures. Further, we apply the same methods to obtain bounds for the tails of hitting times of Branching Random Walks in Random Environment (BRWRE).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, several groups have investigated quantum analogues of random walk algorithms, both on a line and on a circle. It has been found that the quantum versions have markedly different features to the classical versions. Namely, the variance on the line, and the mixing time on the circle increase quadratically faster in the quantum versions as compared to the classical versions. Here, we propose a scheme to implement the quantum random walk on a line and on a circle in an ion trap quantum computer. With current ion trap technology, the number of steps that could be experimentally implemented will be relatively small. However, we show how the enhanced features of these walks could be observed experimentally. In the limit of strong decoherence, the quantum random walk tends to the classical random walk. By measuring the degree to which the walk remains quantum, '' this algorithm could serve as an important benchmarking protocol for ion trap quantum computers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are two significant reasons for the uncertainties of water demand. On one hand, an evolving technological world is plagued with accelerated change in lifestyles and consumption patterns; and on the other hand, intensifying climate change. Therefore, with an uncertain future, what enables policymakers to define the state of water resources, which are affected by withdrawals and demands? Through a case study based on thirteen years of observation data in the Zayandeh Rud River basin in Isfahan province located in Iran, this paper forecasts a wide range of urban water demand possibilities in order to create a portfolio of plans which could be utilized by different water managers. A comparison and contrast of two existing methods are discussed, demonstrating the Random Walk Methodology, which will be referred to as the â On uncertainty pathâ , because it takes the uncertainties into account and can be recommended to managers. This On Uncertainty Path is composed of both dynamic forecasting method and system simulation. The outcomes show the advantage of such methods particularly for places that climate change will aggravate their water scarcity, such as Iran.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The author studies the error and complexity of the discrete random walk Monte Carlo technique for radiosity, using both the shooting and gathering methods. The author shows that the shooting method exhibits a lower complexity than the gathering one, and under some constraints, it has a linear complexity. This is an improvement over a previous result that pointed to an O(n log n) complexity. The author gives and compares three unbiased estimators for each method, and obtains closed forms and bounds for their variances. The author also bounds the expected value of the mean square error (MSE). Some of the results obtained are also shown

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply the formalism of the continuous-time random walk to the study of financial data. The entire distribution of prices can be obtained once two auxiliary densities are known. These are the probability densities for the pausing time between successive jumps and the corresponding probability density for the magnitude of a jump. We have applied the formalism to data on the U.S. dollardeutsche mark future exchange, finding good agreement between theory and the observed data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a class of models of correlated random networks in which vertices are characterized by hidden variables controlling the establishment of edges between pairs of vertices. We find analytical expressions for the main topological properties of these models as a function of the distribution of hidden variables and the probability of connecting vertices. The expressions obtained are checked by means of numerical simulations in a particular example. The general model is extended to describe a practical algorithm to generate random networks with an a priori specified correlation structure. We also present an extension of the class, to map nonequilibrium growing networks to networks with hidden variables that represent the time at which each vertex was introduced in the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a generalization of the persistent random walk for dimensions greater than 1. Based on a cubic lattice, the model is suitable for an arbitrary dimension d. We study the continuum limit and obtain the equation satisfied by the probability density function for the position of the random walker. An exact solution is obtained for the projected motion along an axis. This solution, which is written in terms of the free-space solution of the one-dimensional telegraphers equation, may open a new way to address the problem of light propagation through thin slabs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study discrete-time models in which death benefits can depend on a stock price index, the logarithm of which is modeled as a random walk. Examples of such benefit payments include put and call options, barrier options, and lookback options. Because the distribution of the curtate-future-lifetime can be approximated by a linear combination of geometric distributions, it suffices to consider curtate-future-lifetimes with a geometric distribution. In binomial and trinomial tree models, closed-form expressions for the expectations of the discounted benefit payment are obtained for a series of options. They are based on results concerning geometric stopping of a random walk, in particular also on a version of the Wiener-Hopf factorization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corrections ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a model for transport in multiply scattering media based on a three-dimensional generalization of the persistent random walk. The model assumes that photons move along directions that are parallel to the axes. Although this hypothesis is not realistic, it allows us to solve exactly the problem of multiple scattering propagation in a thin slab. Among other quantities, the transmission probability and the mean transmission time can be calculated exactly. Besides being completely solvable, the model could be used as a benchmark for approximation schemes to multiple light scattering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The author studies random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabilities are given. A necessary and sufficient condition for the existence of the variance is given, together with heuristics to be used in practical cases. The optimal probabilities are also found for the case when one is interested in the whole scene, and are equal to the reflectivities

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the thesis is to analyze whether the returns of general stock market indices of Estonia, Latvia and Lithuania follow the random walk hypothesis (RWH), and in addition, whether they are consistent with the weak-form efficiency criterion. Also the existence of the day-of-the-week anomaly is examined in the same regional markets. The data consists of daily closing quotes of the OMX Tallinn, Riga and Vilnius total return indices for the sample period from January 3, 2000 to August 28, 2009. Moreover, the full sample period is also divided into two sub-periods. The RWH is tested by applying three quantitative methods (i.e. the Augmented Dickey-Fuller unit root test, serial correlation test and non-parametric runs test). Ordinary Least Squares (OLS) regression with dummy variables is employed to detect the day-of-the-week anomalies. The random walk hypothesis (RWH) is rejected in the Estonian and Lithuanian stock markets. The Latvian stock market exhibits more efficient behaviour, although some evidence of inefficiency is also found, mostly during the first sub-period from 2000 to 2004. Day-of-the-week anomalies are detected on every stock market examined, though no longer during the later sub-period.