5 resultados para Bi2Ti2O7


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of Bi2Ti2O7 films with (111) orientation on Si(100) substrate by atmospheric pressure metal-organic chemical vapor deposition(APMOCVD) technique at 480similar to550 degreesC is presented. The films were characterized by X-ray diffraction analysis, atomic force microscopy and electron diffraction. The results show high quality Bi2Ti2O7 films with smooth shinning surface. The dielectric properties and C-V characterization of the films were studied. The dielectric constant (epsilon) and loss tangent (tgdelta) were found to be 180 and 0.01 respectively. The charge storage density was 31.9fC/mum(2). The resistivity is higher than 1x10(12) Omega. .cm under the applied voltage of 5V. The Bi2Ti2O7 films are suitable to be used as a new insulating gate material in dynamic random access memory (DRAM).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of Bi2Ti2O7 films with (111) orientation on Si(100) substrate by atmospheric pressure metal-organic chemical vapor deposition(APMOCVD) technique at 480similar to550 degreesC is presented. The films were characterized by X-ray diffraction analysis, atomic force microscopy and electron diffraction. The results show high quality Bi2Ti2O7 films with smooth shinning surface. The dielectric properties and C-V characterization of the films were studied. The dielectric constant (epsilon) and loss tangent (tgdelta) were found to be 180 and 0.01 respectively. The charge storage density was 31.9fC/mum(2). The resistivity is higher than 1x10(12) Omega. .cm under the applied voltage of 5V. The Bi2Ti2O7 films are suitable to be used as a new insulating gate material in dynamic random access memory (DRAM).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aurivillius phase thin films of Bi5Ti3(FexMn1−x)O15 with x = 1 (Bi5Ti3FeO15) and 0.7 (Bi5Ti3Fe0.7Mn0.3O15) on SiO2-Si(100) and Pt/Ti/SiO2-Si substrates were fabricated by chemical solution deposition. The method was optimized in order to suppress formation of pyrochlore phase Bi2Ti2O7 and improve crystallinity. The structuralproperties of the films were examined by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Optimum crystallinity and pyrochlore phase suppression was achieved by the addition of 15 to 25 mol. % excess bismuth to the sols. Based on this study, 17.5 mol. % excess bismuth was used in the preparation of Bi2Ti2O7-free films of Bi5Ti3FeO15 on SrTiO3(100) and NdGaO3(001) substrates, confirming the suppression of pyrochlore phase using this excess of bismuth. Thirty percent of the Fe3+ ions in Bi5Ti3FeO15 was substituted with Mn3+ ions to form Bi2Ti2O7-free thin films of Bi5Ti3Fe0.7Mn0.3O15 on Pt/Ti/SiO2-Si, SiO2-Si(100), SrTiO3(100), and NdGaO3(001) substrates. Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films on Pt/Ti/SiO2-Si and SiO2-Si(100) substrates were achieved with a higher degree of a-axis orientation compared with the films on SrTiO3(100) and NdGaO3(001) substrates. Room temperature electromechanical and magnetic properties of the thin films were investigated in order to assess the potential of these materials for piezoelectric,ferroelectric, and multiferroic applications. Vertical piezoresponse force microscopy measurements of the films demonstrate that Bi5Ti3FeO15 and Bi5Ti3Fe0.7Mn0.3O15thin films are piezoelectric at room temperature. Room temperature switching spectroscopy-piezoresponse force microscopy measurements in the presence and absence of an applied bias demonstrate local ferroelectric switching behaviour (180°) in the films. Superconducting quantum interference device magnetometry measurements do not show any room temperature ferromagnetic hysteresis down to an upper detection limit of 2.53 × 10−3 emu; and it is concluded, therefore, that such films are not mutiferroic at room temperature. Piezoresponse force microscopy lithography images of Bi5Ti3Fe0.7Mn0.3O15thin films are presented.