996 resultados para Bi-enzymatic biosensor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bi-enzymatic biosensor (LACC–TYR–AuNPs–CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC–TYR–AuNPs–CS/GPE exhibited an improved Michaelis–Menten kinetic constant (26.9 ± 0.5 M) when compared with LACC–AuNPs–CS/GPE (37.8 ± 0.2 M) and TYR–AuNPs–CS/GPE (52.3 ± 0.4 M). Using 4-aminophenol as substrate at pH 5.5, the device presented wide linear ranges, low detection limits (1.68×10− 9 ± 1.18×10− 10 – 2.15×10− 7 ± 3.41×10− 9 M), high accuracy, sensitivity (1.13×106 ± 8.11×104 – 2.19×108 ± 2.51×107 %inhibition M− 1), repeatability (1.2–5.8% RSD), reproducibility (3.2–6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8 ± 0.3% (lemon) to 97.8 ± 0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study focused on the development of a sensitive enzymatic biosensor for the determination of pirimicarb pesticide based on the immobilization of laccase on composite carbon paste electrodes. Multi- walled carbon nanotubes(MWCNTs)paste electrode modified by dispersion of laccase(3%,w/w) within the optimum composite matrix(60:40%,w/w,MWCNTs and paraffin binder)showed the best performance, with excellent electron transfer kinetic and catalytic effects related to the redox process of the substrate4- aminophenol. No metal or anti-interference membrane was added. Based on the inhibition of laccase activity, pirimicarb can be determined in the range 9.90 ×10- 7 to 1.15 ×10- 5 molL 1 using 4- aminophenol as substrate at the optimum pH of 5.0, with acceptable repeatability and reproducibility (relative standard deviations lower than 5%).The limit of detection obtained was 1.8 × 10-7 molL 1 (0.04 mgkg 1 on a fresh weight vegetable basis).The high activity and catalytic properties of the laccase- based biosensor are retained during ca. one month. The optimized electroanalytical protocol coupled to the QuEChERS methodology were applied to tomato and lettuce samples spiked at three levels; recoveries ranging from 91.0±0.1% to 101.0 ± 0.3% were attained. No significant effects in the pirimicarb electro- analysis were observed by the presence of pro-vitamin A, vitamins B1 and C,and glucose in the vegetable extracts. The proposed biosensor- based pesticide residue methodology fulfills all requisites to be used in implementation of food safety programs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A glutathione-S-transferase (GST)based biosensor was developed to quantify the thiocarbamate herbicide molinate in environmental water.The biosensor construction was based on GST immobilization onto a glassy carbon electrode via aminosilane–glutaraldehyde covalent attachment. The principle supporting the use of this biosensor consists of the GST inhibition process promoted by molinate. Differential pulse voltammetry was used to obtain a calibration curve for molinate concentration, ranging from 0.19 to 7.9 mgL -1 and presenting a detection limit of 0.064 mgL- 1. The developed biosensor is stable,and reusable during 15 days.The GST-based biosensor was successfully applied to quantify molinate in rice paddy field floodwater samples. The results achieved with the developed biosensor were in accordance with those obtained by high performance liquid chromatography. The proposed device is suitable for screening environmental water analysis and, since no sample preparation is required, it can be used in situ and in real-time measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work describes the development of an electrochemical enzymatic biosensor for quantification of the pesticide formetanate hydrochloride (FMT). It is based on a gold electrode modified with electrodeposited gold nanoparticles and laccase. The principle behind its development relies on FMT's capacity to inhibit the laccase catalytic reaction that occurs in the presence of phenolic substrates. The optimum values for the relevant experimental variables such as gold nanoparticles electrochemical deposition (at − 0.2 V for 100 s), laccase immobilization (via glutaraldehyde cross-linking), laccase concentration (12.4 mg/mL), substrate selection and concentration (5.83×10−5 M of aminophenol), pH (5.0), buffer (Britton–Robinson), and square-wave voltammetric parameters were determined. The developed biosensor was successfully applied to FMT determination in mango and grapes. The attained limit of detection was 9.5×10−8 ± 9.5×10−10 M (0.02 ± 2.6×10−4 mg/kg on a fresh fruit weight basis). Recoveries for the five tested spiking levels ranged from 95.5 ± 2.9 (grapes) to 108.6 ± 2.5% (mango). The results indicated that the proposed device presents suitable characteristics in terms of sensitivity (20.58 ± 0.49 A/μM), linearity (9.43×10−7 to 1.13×10−5 M), accuracy, repeatability (RSD of 1.4%), reproducibility (RSD of 1.8%) and stability (19 days) for testing of compliance with established maximum residue limits of FMT in fruits and vegetables.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel enzymatic biosensor for carbamate pesticides detection was developed through the direct immobilization of Trametes versicolor laccase on graphene doped carbon paste electrode functionalized with Prussianblue films (LACC/PB/GPE). Graphene was prepared by graphite sonication-assisted exfoliation and characterized by transmission electron microscopy and X-ray photoelectron spectro- scopy. The Prussian blue film electrodeposited onto graphene doped carbon paste electrode allowed considerable reduction of the charge transfer resistance and of the capacitance of the device.The combined effects of pH, enzyme concentration and incubation time on biosensor response were optimized using a 23 full-factorial statistical design and response surface methodology. Based on the inhibition of laccase activity and using 4-aminophenol as redox mediator at pH 5.0,LACC/PB/GPE exhibited suitable characteristics in terms of sensitivity, intra-and inter-day repeatability (1.8–3.8% RSD), reproducibility (4.1 and 6.3%RSD),selectivity(13.2% bias at the higher interference: substrate ratios tested),accuracy and stability(ca. twenty days)for quantification of five carbamates widely applied on tomato and potato crops.The attained detection limits ranged between 5.2×10−9 mol L−1(0.002 mg kg−1 w/w for ziram)and 1.0×10−7 mol L−1 (0.022 mg kg−1 w/w for carbofuran).Recovery values for the two tested spiking levels ranged from 90.2±0.1%(carbofuran)to 101.1±0.3% (ziram) for tomato and from 91.0±0.1%(formetanate)to 100.8±0.1%(ziram)for potato samples.The proposed methodology is appropriate to enable testing pesticide levels in food samples to fit with regulations and food inspections.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Os radicais livres formam-se naturalmente nos organismos vivos, pois a sua produção/geração está interligada com o processo de produção de energia (respiração), processos inflamatórios (fagocitose), regulação do crescimento celular, sinalização intercelular e síntese de substâncias biológicas relevantes. Estes também podem ser introduzidos por vias exógenas (poluição, radiação, tabaco, alimentação, etc). Os radicais livres têm capacidade de reagir com o material nucleico (ADN e ARN), proteínas e substâncias oxidáveis, causando danos oxidativos responsáveis pelo envelhecimento e originar doenças degenerativas, tais como, o cancro, arteriosclerose, artrite reumatoide, entre outras. De forma a combater os efeitos pejorativos provocados pelos radicais, os organismos vivos desenvolveram complexos sistemas de defesa antioxidante. Estes sistemas são constituídos por antioxidantes endógenos, produzidos pelos seres vivos, tais como enzimas ou por antioxidantes exógenos obtidos por via da alimentação (por exemplo o ácido ascórbico). Neste sentido, um antioxidante tem capacidade de eliminar ou reduzir a propagação da cadeia de geração de radicais livres. Neste trabalho foi desenvolvido um biossensor enzimático para a quantificação da capacidade antioxidante total de matrizes alimentares. A construção deste biossensor consistiu na eletroimobilização da adenina no elétrodo de pasta de carbono (EPC) ou na adsorção física da dA20 na superfície do EPC. O dano oxidativo foi induzido pelo radical hidroxilo gerado pela reação de Fenton. Nesta dissertação, foi estudada a capacidade de alguns antioxidantes em eliminar o efeito pejorativo dos radicais livres e combater a integridade das bases de adenina ou do dA20.Os antioxidantes estudados foram o ácido ascórbico e alguns ácidos fenólicos como o ácido hidroxibenzoico (ácido gálico) e ácidos hidroxicinâmicos (ácido cafeico e ácido cumárico). Estes antioxidantes têm a capacidade de neutralizar o radical hidroxilo e proteger a adenina/dA20 imobilizado na superfície do EPC. O comportamento da Lacase foi estudado na presença do ácido gálico e do ácido ascórbico. Os estudos eletroquímicos foram realizados através da voltametria de onda quadrada (VOQ), sendo que a interação entre a adenina/ou o dA20 imobilizada na superfície do EPC e os radicais livres na ausência e presença de antioxidantes foi avaliada por meio de mudanças no pico anódico produzido pela oxidação da adenina /dA20. Os resultados demonstraram que estes biossensores permitem a avaliação da capacidade antioxidante total em águas aromatizadas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fast, selective, reproducible and reliable detections have been carried out by using enzymatic biosensors in several areas. The enzymatic biosensors based on the inhibition represent an important role in analytical chemistry. Enzymes like cholinesterases, peroxidases, tyrosinases, etc. have been immobilized on electrochemical and optical transducers and the enzymatic activity decreasing in the presence of the inhibitor is related with its concentrations. This article presents a review on the enzymes used on the construction of these sensors, emphasizing the respective applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fast, selective, reproducible and reliable detections have been carried out by using enzymatic biosensors in several areas. The enzymatic biosensors based on the inhibition represent an important role in analytical chemistry. Enzymes like cholinesterases, peroxidases, tyrosinases, etc. have been immobilized on electrochemical and optical transducers and the enzymatic activity decreasing in the presence of the inhibitor is related with its concentrations. This article presents a review on the enzymes used on the construction of these sensors, emphasizing the respective applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work, a biosensor was built with smart material based on polymer brushes. The biosensor demonstrated a pH-sensitive on-off property, and it was further used to control or modulate the electrochemical responses of the biosensor. This property could be used to realize pH-controlled electrochemical reaction of hydrogen peroxide and HRP immobilized on polymer brushes. The composite film also showed excellent amperometric i-t response toward hydrogen peroxide in the concentration range of 0-13 μM. In future, this platform might be used for self-regulating targeted diagnostic, drug delivery and biofuel cell based on controllable bioelectrocatalysis. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An acetylcholinesterase (AchE) based amperometric biosensor was developed by immobilisation of the enzyme onto a self assembled modified gold electrode. Cyclic voltammetric experiments performed with the SAM-AchE biosensor in phosphate buffer solutions ( pH = 7.2) containing acetylthiocholine confirmed the formation of thiocholine and its electrochemical oxidation at E-p = 0.28 V vs Ag/AgCl. An indirect methodology involving the inhibition effect of parathion and carbaryl on the enzymatic reaction was developed and employed to measure both pesticides in spiked natural water and food samples without pre-treatment or pre-concentration steps. Values higher than 91-98.0% in recovery experiments indicated the feasibility of the proposed electroanalytical methodology to quantify both pesticides in water or food samples. HPLC measurements were also performed for comparison and confirmed the values measured amperometrically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the formation of transformation products (TPs) by the enzymatic degradation at laboratory scale of two highly consumed antibiotics: tetracycline (Tc) and erythromycin (ERY). The analysis of the samples was carried out by a fast and simple method based on the novel configuration of the on-line turbulent flow system coupled to a hybrid linear ion trap – high resolution mass spectrometer. The method was optimized and validated for the complete analysis of ERY, Tc and their transformation products within 10 min without any other sample manipulation. Furthermore, the applicability of the on-line procedure was evaluated for 25 additional antibiotics, covering a wide range of chemical classes in different environmental waters with satisfactory quality parameters. Degradation rates obtained for Tc by laccase enzyme and ERY by EreB esterase enzyme without the presence of mediators were ∼78% and ∼50%, respectively. Concerning the identification of TPs, three suspected compounds for Tc and five of ERY have been proposed. In the case of Tc, the tentative molecular formulas with errors mass within 2 ppm have been based on the hypothesis of dehydroxylation, (bi)demethylation and oxidation of the rings A and C as major reactions. In contrast, the major TP detected for ERY has been identified as the “dehydration ERY-A”, with the same molecular formula of its parent compound. In addition, the evaluation of the antibiotic activity of the samples along the enzymatic treatments showed a decrease around 100% in both cases

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Initially, all major factors that affect the rate of the AldH-catalyzed reaction (enzyme concentration, substrate concentration, temperature and pH) were investigated. Optimal activity was observed between pH values of 7.5 and 9.5 in the temperature range of 25 to 50 ºC. Kinetic parameters, such as Km (2.92 µmol L-1) and Vmax (1.33 10-2 µmol min-1) demonstrate a strong enzyme-substrate affinity. The sensors were based on screen-printed electrodes modified with the Meldola Blue-Reinecke salt (MBRS) combination. Operational conditions (NAD+ and substrate contents, enzyme loading and response time) were optimized. Also, two enzyme immobilization procedures were tested: entrapment in poly(vinyl alcohol) bearing styrylpyridinium groups (PVA-SbQ) and crosslinking with glutaraldehyde. Chronoamperometry was employed to observe the biosensor responses during enzymatic hydrolysis of propionaldehyde and also to construct inhibition curves with maneb and zineb fungicides. Best results were found with the following conditions: [NAD+] = 0.25 mmol L-1; [propionaldehyde] = 80 µmol L-1; enzyme loading = 0.8 U per electrode; response time = 10 min, and inhibition time = 10 min. Current intensities around 103 ± 13 nA with the sensors and good stability was obtained for both immobilization procedures. Detection limits, calculated using 10% inhibition were 31.5 µg L-1 and 35 µg L-1 for maneb and zineb, respectively. Results obtained with other MBRS-modified electrodes consisting of mono and bi-enzymic sensors were compared. The ability to catalyze NADH oxidation by MB was also highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An amperometric biosensor for salicylate detection was developed by immobilizing salicylate hydroxylase via glutaraldehyde onto a polypyrrole film doped with hexacyanoferrate, supported on a glassy carbon electrode surface. The sensor monitors the catechol produced in the enzymatic reaction on the film surface, at an applied potential of 150 mV vs. SCE. A [NADH]/[salicylate] ratio between 2 and 4 gave the best response. The biosensor presented the best performance in a solution with pH=7.4. The response time was about 40 s. A linear range of response was observed for salicylate concentrations between 1.0x10(-5) and 1.0x10(-4) mol l(-1) and the equation adjusted for this curve was I=(-0.04+/-0.01)+(11.4+/-0.2)[salicylate] with a correlation coefficient of 0.999 for n=6. The biosensor retains its activity for at least 10 days despite daily use. The results obtained using the biosensor for salicylate determination, in three different samples of antithermic drugs, presented a good correlation with the standard colorimetric method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly sensitive amperometric biosensor for determination of carbamate pesticides directly in water, fruit and vegetable samples has been evaluated, electrochemically characterized and optimized. The biosensor strip was fabricated in screen printed technique on a ceramic support using silver-based paste for reference electrode, and platinum-based paste for working and auxiliary electrodes. The working electrode was modified by a layer of carbon paste mixed with cobalt(II) phthalocyanine and acetylcellulose. Cholinesterase (ChE) enzymes with low enzymatic charge were immobilized on this layer. The operational simplicity of the biosensor consists in that a small drop (similar to 50 mu l) of substrate or sample is deposited on a horizontally positioned biosensor strip representing the microelectrochemical cell. The working potential of the biosensor was 370 mV versus Ag/AgI on a ship reference electrode preventing the interference of electroactive species which are oxidable at more positive potentials. The biosensor was applied to investigate the degradation of two reference ChE inhibitors in freeze dried water under different storage conditions and for direct determination of some N-methylcarbamates (NMCs) in fruit and vegetable samples at ppb concentration levels without any sample pretreatment. A comparison of the obtained results for the total carbamate concentration was done against those obtained using HPLC measurements. (C) 1999 Elsevier B.V. B.V. All rights reserved.