957 resultados para Beyond Standard Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This is a summary of the beyond the Standard Model (including model building working group of the WHEPP-X workshop held at Chennai from January 3 to 15, 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If the electroweak symmetry breaking is originated from a strongly coupled sector, as for instance in composite Higgs models, the Higgs boson couplings can deviate from their Standard Model values. In such cases, at sufficiently high energies there could occur an onset of multiple Higgs boson and longitudinally polarised electroweak gauge boson (V L ) production. We study the sensitivity to anomalous Higgs couplings in inelastic processes with 3 and 4 particles (either Higgs bosons or V L 's) in the final state. We show that, due to the more severe cancellations in the corresponding amplitudes as compared to the usual 2 → 2 processes, large enhancements with respect to the Standard Model can arise even for small modifications of the Higgs couplings. In particular, we find that triple Higgs production provides the best multiparticle channel to look for these deviations. We briefly explore the consequences of multiparticle production at the LHC. © 2013 SISSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We perform an analysis of the electroweak precision observables in the Lee-Wick Standard Model. The most stringent restrictions come from the S and T parameters that receive important tree level and one loop contributions. In general the model predicts a large positive S and a negative T. To reproduce the electroweak data, if all the Lee-Wick masses are of the same order, the Lee-Wick scale is of order 5 TeV. We show that it is possible to find some regions in the parameter space with a fermionic state as light as 2.4-3.5 TeV, at the price of rising all the other masses to be larger than 5-8 TeV. To obtain a light Higgs with such heavy resonances a fine-tuning of order a few per cent, at least, is needed. We also propose a simple extension of the model including a fourth generation of Standard Model fermions with their Lee-Wick partners. We show that in this case it is possible to pass the electroweak constraints with Lee-Wick fermionic masses of order 0.4-1.5 TeV and Lee-Wick gauge masses of order 3 TeV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Complex singlet extension of the Standard Model (CxSM) is the simplest extension that provides scenarios for Higgs pair production with different masses. The model has two interesting phases: the dark matter phase, with a Standard Model-like Higgs boson, a new scalar and a dark matter candidate; and the broken phase, with all three neutral scalars mixing. In the latter phase Higgs decays into a pair of two different Higgs bosons are possible. In this study we analyse Higgs-to-Higgs decays in the framework of singlet extensions of the Standard Model (SM), with focus on the CxSM. After demonstrating that scenarios with large rates for such chain decays are possible we perform a comparison between the NMSSM and the CxSM. We find that, based on Higgs-to-Higgs decays, the only possibility to distinguish the two models at the LHC run 2 is through final states with two different scalars. This conclusion builds a strong case for searches for final states with two different scalars at the LHC run 2. Finally, we propose a set of benchmark points for the real and complex singlet extensions to be tested at the LHC run 2. They have been chosen such that the discovery prospects of the involved scalars are maximised and they fulfil the dark matter constraints. Furthermore, for some of the points the theory is stable up to high energy scales. For the computation of the decay widths and branching ratios we developed the Fortran code sHDECAY, which is based on the implementation of the real and complex singlet extensions of the SM in HDECAY.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis describes simple extensions of the standard model with new sources of baryon number violation but no proton decay. The motivation for constructing such theories comes from the shortcomings of the standard model to explain the generation of baryon asymmetry in the universe, and from the absence of experimental evidence for proton decay. However, lack of any direct evidence for baryon number violation in general puts strong bounds on the naturalness of some of those models and favors theories with suppressed baryon number violation below the TeV scale. The initial part of the thesis concentrates on investigating models containing new scalars responsible for baryon number breaking. A model with new color sextet scalars is analyzed in more detail. Apart from generating cosmological baryon number, it gives nontrivial predictions for the neutron-antineutron oscillations, the electric dipole moment of the neutron, and neutral meson mixing. The second model discussed in the thesis contains a new scalar leptoquark. Although this model predicts mainly lepton flavor violation and a nonzero electric dipole moment of the electron, it includes, in its original form, baryon number violating nonrenormalizable dimension-five operators triggering proton decay. Imposing an appropriate discrete symmetry forbids such operators. Finally, a supersymmetric model with gauged baryon and lepton numbers is proposed. It provides a natural explanation for proton stability and predicts lepton number violating processes below the supersymmetry breaking scale, which can be tested at the Large Hadron Collider. The dark matter candidate in this model carries baryon number and can be searched for in direct detection experiments as well. The thesis is completed by constructing and briefly discussing a minimal extension of the standard model with gauged baryon, lepton, and flavor symmetries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The works presented in this thesis explore a variety of extensions of the standard model of particle physics which are motivated by baryon number (B) and lepton number (L), or some combination thereof. In the standard model, both baryon number and lepton number are accidental global symmetries violated only by non-perturbative weak effects, though the combination B-L is exactly conserved. Although there is currently no evidence for considering these symmetries as fundamental, there are strong phenomenological bounds restricting the existence of new physics violating B or L. In particular, there are strict limits on the lifetime of the proton whose decay would violate baryon number by one unit and lepton number by an odd number of units.

The first paper included in this thesis explores some of the simplest possible extensions of the standard model in which baryon number is violated, but the proton does not decay as a result. The second paper extends this analysis to explore models in which baryon number is conserved, but lepton flavor violation is present. Special attention is given to the processes of μ to e conversion and μ → eγ which are bound by existing experimental limits and relevant to future experiments.

The final two papers explore extensions of the minimal supersymmetric standard model (MSSM) in which both baryon number and lepton number, or the combination B-L, are elevated to the status of being spontaneously broken local symmetries. These models have a rich phenomenology including new collider signatures, stable dark matter candidates, and alternatives to the discrete R-parity symmetry usually built into the MSSM in order to protect against baryon and lepton number violating processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the impact of new physics beyond the Standard Model to the s --> d gamma process, which is responsible for the short-distance contribution to the radiative decay Omega-( )--> Xi(-) gamma. We study three representative extensions of the Standard Model, namely a one-family technicolor model, a two Higgs doublet model and a model containing scalar leptoquarks. When constraints arising from the observed b --> s gamma transition and the upper limit on D-0-(D) over bar(0) mixing are taken into account, we find no significant contributions of new physics to the s --> d gamma process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)