39 resultados para Betweenness
Resumo:
Depois da segunda metade do século XIX e consoante a filiação platónica (maioritária) ou aristotélica (fundamentalmente equivocada pela leitura brechtiana de Aristóteles) de quem interpreta essa espécie de realismo e o realismo, o processo de participação do espectador na cena é descrito como idiotia emocional burguesa, face a uma caixa de ilusões, como possibilidade de intervenção crítica e complemento hermenêutico de um fenómeno que exige e depende do espectador, e até como metáfora, resultante de uma apropriação vocabular e técnica, para interpretar, no duplo sentido da palavra, e descrever o comportamento social dos indivíduos.
Resumo:
In this paper we study the reconstruction of a network topology from the values of its betweenness centrality, a measure of the influence of each of its nodes in the dissemination of information over the network. We consider a simple metaheuristic, simulated annealing, as the combinatorial optimization method to generate the network from the values of the betweenness centrality. We compare the performance of this technique when reconstructing different categories of networks –random, regular, small-world, scale-free and clustered–. We show that the method allows an exact reconstruction of small networks and leads to good topological approximations in the case of networks with larger orders. The method can be used to generate a quasi-optimal topology fora communication network from a list with the values of the maximum allowable traffic for each node.
Resumo:
There are several centrality measures that have been introduced and studied for real world networks. They account for the different vertex characteristics that permit them to be ranked in order of importance in the network. Betweenness centrality is a measure of the influence of a vertex over the flow of information between every pair of vertices under the assumption that information primarily flows over the shortest path between them. In this paper we present betweenness centrality of some important classes of graphs.
Resumo:
We propose and discuss a new centrality index for urban street patterns represented as networks in geographical space. This centrality measure, that we call ranking-betweenness centrality, combines the idea behind the random-walk betweenness centrality measure and the idea of ranking the nodes of a network produced by an adapted PageRank algorithm. We initially use a PageRank algorithm in which we are able to transform some information of the network that we want to analyze into numerical values. Numerical values summarizing the information are associated to each of the nodes by means of a data matrix. After running the adapted PageRank algorithm, a ranking of the nodes is obtained, according to their importance in the network. This classification is the starting point for applying an algorithm based on the random-walk betweenness centrality. A detailed example of a real urban street network is discussed in order to understand the process to evaluate the ranking-betweenness centrality proposed, performing some comparisons with other classical centrality measures.
Resumo:
In this paper a genetic algorithm (GA) is applied on Maximum Betweennes Problem (MBP). The maximum of the objective function is obtained by finding a permutation which satisfies a maximal number of betweenness constraints. Every permutation considered is genetically coded with an integer representation. Standard operators are used in the GA. Instances in the experimental results are randomly generated. For smaller dimensions, optimal solutions of MBP are obtained by total enumeration. For those instances, the GA reached all optimal solutions except one. The GA also obtained results for larger instances of up to 50 elements and 1000 triples. The running time of execution and finding optimal results is quite short.
Resumo:
Our purpose in this article is to define a network structure which is based on two egos instead of the egocentered (one ego) or the complete network (n egos). We describe the characteristics and properties for this kind of network which we call “nosduocentered network”, comparing it with complete and egocentered networks. The key point for this kind of network is that relations exist between the two main egos and all alters, but relations among others are not observed. After that, we use new social network measures adapted to the nosduocentered network, some of which are based on measures for complete networks such as degree, betweenness, closeness centrality or density, while some others are tailormade for nosduocentered networks. We specify three regression models to predict research performance of PhD students based on these social network measures for different networks such as advice, collaboration, emotional support and trust. Data used are from Slovenian PhD students and their s
Resumo:
Quantitatively assessing the importance or criticality of each link in a network is of practical value to operators, as that can help them to increase the network's resilience, provide more efficient services, or improve some other aspect of the service. Betweenness is a graph-theoretical measure of centrality that can be applied to communication networks to evaluate link importance. However, as we illustrate in this paper, the basic definition of betweenness centrality produces inaccurate estimations as it does not take into account some aspects relevant to networking, such as the heterogeneity in link capacity or the difference between node-pairs in their contribution to the total traffic. A new algorithm for discovering link centrality in transport networks is proposed in this paper. It requires only static or semi-static network and topology attributes, and yet produces estimations of good accuracy, as verified through extensive simulations. Its potential value is demonstrated by an example application. In the example, the simple shortest-path routing algorithm is improved in such a way that it outperforms other more advanced algorithms in terms of blocking ratio
Resumo:
A character network represents relations between characters from a text; the relations are based on text proximity, shared scenes/events, quoted speech, etc. Our project sketches a theoretical framework for character network analysis, bringing together narratology, both close and distant reading approaches, and social network analysis. It is in line with recent attempts to automatise the extraction of literary social networks (Elson, 2012; Sack, 2013) and other studies stressing the importance of character- systems (Woloch, 2003; Moretti, 2011). The method we use to build the network is direct and simple. First, we extract co-occurrences from a book index, without the need for text analysis. We then describe the narrative roles of the characters, which we deduce from their respective positions in the network, i.e. the discourse. As a case study, we use the autobiographical novel Les Confessions by Jean-Jacques Rousseau. We start by identifying co-occurrences of characters in the book index of our edition (Slatkine, 2012). Subsequently, we compute four types of centrality: degree, closeness, betweenness, eigenvector. We then use these measures to propose a typology of narrative roles for the characters. We show that the two parts of Les Confessions, written years apart, are structured around mirroring central figures that bear similar centrality scores. The first part revolves around the mentor of Rousseau; a figure of openness. The second part centres on a group of schemers, depicting a period of deep paranoia. We also highlight characters with intermediary roles: they provide narrative links between the societies in the life of the author. The method we detail in this complete case study of character network analysis can be applied to any work documented by an index. Un réseau de personnages modélise les relations entre les personnages d'un récit : les relations sont basées sur une forme de proximité dans le texte, l'apparition commune dans des événements, des citations dans des dialogues, etc. Notre travail propose un cadre théorique pour l'analyse des réseaux de personnages, rassemblant narratologie, close et distant reading, et analyse des réseaux sociaux. Ce travail prolonge les tentatives récentes d'automatisation de l'extraction de réseaux sociaux tirés de la littérature (Elson, 2012; Sack, 2013), ainsi que les études portant sur l'importance des systèmes de personnages (Woloch, 2003; Moretti, 2011). La méthode que nous utilisons pour construire le réseau est directe et simple. Nous extrayons les co-occurrences d'un index sans avoir recours à l'analyse textuelle. Nous décrivons les rôles narratifs des personnages en les déduisant de leurs positions relatives dans le réseau, donc du discours. Comme étude de cas, nous avons choisi le roman autobiographique Les Confessions, de Jean- Jacques Rousseau. Nous déduisons les co-occurrences entre personnages de l'index présent dans l'édition Slatkine (Rousseau et al., 2012). Sur le réseau obtenu, nous calculons quatre types de centralité : le degré, la proximité, l'intermédiarité et la centralité par vecteur propre. Nous utilisons ces mesures pour proposer une typologie des rôles narratifs des personnages. Nous montrons que les deux parties des Confessions, écrites à deux époques différentes, sont structurées autour de deux figures centrales, qui obtiennent des mesures de centralité similaires. La première partie est construite autour du mentor de Rousseau, qui a symbolisé une grande ouverture. La seconde partie se focalise sur un groupe de comploteurs, et retrace une période marquée par la paranoïa chez l'auteur. Nous mettons également en évidence des personnages jouant des rôles intermédiaires, et de fait procurant un lien narratif entre les différentes sociétés couvrant la vie de l'auteur. La méthode d'analyse des réseaux de personnages que nous décrivons peut être appliquée à tout texte de fiction comportant un index.
Resumo:
Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration.
Resumo:
This master thesis presents a research on the analysis of film tourism stakeholders in Catalonia applying the network analysis approach. The research aims to provide an analysis of the relations between local tourism stakeholders with local film offices through their websites. Therefore, the development of the present work involved the review of literature on the themes of film tourism and network analysis. Then the main stakeholders of film and tourism of Catalonia were identified and their websites analyzed. The measures indicators for network analysis such as centrality, closeness and betweenness degree have been applied on the analysis of the websites to determine the extent of the relations of film and tourism stakeholders in Catalonia. Results and conclusions are presented on the referred sections
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
Notre étude porte sur la manière dont les chercheurs universitaires junior et senior en sciences sociales au Québec établissent leurs réseaux de cosignataires et donnent une interprétation discursive à leurs activités de collaboration face à l'impact du changement institutionnel universitaire pendant la période 1990-2009. Plus spécifiquement, notre recherche s'intéresse à montrer que la création des réseaux et la collaboration scientifique par cosignature peuvent être identifiées comme des « ajustements professionnels » et se présenter aussi comme une ressource du capital social qui peut être mobilisé et qui peut produire des avantages aux chercheurs en accord avec leur statut junior ou senior. Il s’agit donc d’une recherche qui relève de la sociologie des sciences. Notre approche a été opérationnalisée à partir de l'étude de 15 membres d'un centre de recherche universitaire au Québec, et leur réseau de 447 cosignataires (y compris les chercheurs de l'étude), et à travers l'application de 7 entretiens auprès de chercheurs junior et senior du même centre. Dans le même plan opérationnel, depuis une perspective qualitative, la thèse permet d'identifier le sens discursif que les chercheurs fournissent à la collaboration et à la participation en réseaux de cosignatures. Ensuite, depuis l'analyse structurelle des réseaux, notre étude montre les connexions individuelles et leurs formes d'interprétation — spécialement la théorie des graphes et ses mesures de centralité (la centralité de degré, la centralité d’intermédiarité et la centralité de vecteur propre) — de même que l'homophilie par statut entre chercheurs. Enfin, depuis l'analyse statistique, elle montre la corrélation des périodes de l'étude et des attributs socioprofessionnels des chercheurs étudiés (sexe, statut universitaire, affiliation institutionnelle, discipline d’appartenance, pays, région du Canada et ville de travail). Notamment, les résultats de notre thèse montrent que chaque catégorie de chercheurs possède ses propres particularités structurelles et discursives en ce qui a trait à ses pratiques de collaboration en réseau, et vont confirmer que les chercheurs senior, plus que les chercheurs junior, grâce à leur capital social mobilisé, ont conservé et obtenu plus d'avantages de leur réseau de cosignataires afin de s'adapter au changement institutionnel et mieux gérer leur travail de collaboration destiné à l’espace international, mais surtout à l'espace local.
Resumo:
A key argument for modeling knowledge in ontologies is the easy re-use and re-engineering of the knowledge. However, beside consistency checking, current ontology engineering tools provide only basic functionalities for analyzing ontologies. Since ontologies can be considered as (labeled, directed) graphs, graph analysis techniques are a suitable answer for this need. Graph analysis has been performed by sociologists for over 60 years, and resulted in the vivid research area of Social Network Analysis (SNA). While social network structures in general currently receive high attention in the Semantic Web community, there are only very few SNA applications up to now, and virtually none for analyzing the structure of ontologies. We illustrate in this paper the benefits of applying SNA to ontologies and the Semantic Web, and discuss which research topics arise on the edge between the two areas. In particular, we discuss how different notions of centrality describe the core content and structure of an ontology. From the rather simple notion of degree centrality over betweenness centrality to the more complex eigenvector centrality based on Hermitian matrices, we illustrate the insights these measures provide on two ontologies, which are different in purpose, scope, and size.
Resumo:
Our purpose in this article is to define a network structure which is based on two egos instead of the egocentered (one ego) or the complete network (n egos). We describe the characteristics and properties for this kind of network which we call “nosduocentered network”, comparing it with complete and egocentered networks. The key point for this kind of network is that relations exist between the two main egos and all alters, but relations among others are not observed. After that, we use new social network measures adapted to the nosduocentered network, some of which are based on measures for complete networks such as degree, betweenness, closeness centrality or density, while some others are tailormade for nosduocentered networks. We specify three regression models to predict research performance of PhD students based on these social network measures for different networks such as advice, collaboration, emotional support and trust. Data used are from Slovenian PhD students and their s