939 resultados para Beta-globin Gene
Resumo:
Purpose: Considering the importance of type beta thalassaemias as hereditary syndromes of high significance in different populations of Mediterranean origin and, by extension, in the Brazilian population, the objective of the present study was to determine by PCR/DGGE the gene structures responsible for neutral polymorphisms (frameworks) observed in the human beta globin gene associated with the mutations responsible for type beta thalassaemias in a sample of the Brazilian population and, more specifically, of the population of the State of São Paulo. Patients and methods: Thirty individuals with beta thalassaemic mutations were analyzed: 22 mutations were in codon 39 (C->T), 5 in IVS1-110 (G->A), 2 in IVS1-6 (T->C) and 1 in IVS1-1 (G->A). DNA was extracted and selective amplification was performed by PCR extending from position IVS1 nt 46 to IVS2 nt 126 (474 pb). The product was then analyzed by polyacrylamide gel electrophoresis on a denaturing 10-60% urea/formamide gradient. Results: The results demonstrated that, as expected, the mutations responsible for type beta thalassaemia observed in this population are of Mediterranean origin, with 73% distribution represented by codon 39,17% by IVS1-110, 7% by IVS1-6 and 3% by IVS1-1. In turn, framework distribution seems to indicate a higher frequency of Fr 1-1 in codon 39 and IVS1-110, of Fr 1-3 in IVS1-6 and of Fr 1-2 in IVS1-1. Conclusions: These results permit us to conclude that gene amplification by PCR followed by DGGE is an appropriate method for the separation of DNA molecules that differ even by a single base change and therefore can be utilized to detect the alterations observed in the human beta globin gene. This methodology shows that, using only a pair of primers, it is possible to define the frameworks that are observed in the beta globin gene.
Genetic relationships among native americans based on beta-globin gene cluster haplotype frequencies
Resumo:
The distribution of b-globin gene haplotypes was studied in 209 Amerindians from eight tribes of the Brazilian Amazon: Asurini from Xingú, Awá-Guajá, Parakanã, Urubú-Kaapór, Zoé, Kayapó (Xikrin from the Bacajá village), Katuena, and Tiriyó. Nine different haplotypes were found, two of which (n. 11 and 13) had not been previously identified in Brazilian indigenous populations. Haplotype 2 (+ - - - -) was the most common in all groups studied, with frequencies varying from 70% to 100%, followed by haplotype 6 (- + + - +), with frequencies between 7% and 18%. The frequency distribution of the b-globin gene haplotypes in the eighteen Brazilian Amerindian populations studied to date is characterized by a reduced number of haplotypes (average of 3.5) and low levels of heterozygosity and intrapopulational differentiation, with a single clearly predominant haplotype in most tribes (haplotype 2). The Parakanã, Urubú-Kaapór, Tiriyó and Xavante tribes constitute exceptions, presenting at least four haplotypes with relatively high frequencies. The closest genetic relationships were observed between the Brazilian and the Colombian Amerindians (Wayuu, Kamsa and Inga), and, to a lesser extent, with the Huichol of Mexico. North-American Amerindians are more differentiated and clearly separated from all other tribes, except the Xavante, from Brazil, and the Mapuche, from Argentina. A restricted pool of ancestral haplotypes may explain the low diversity observed among most present-day Brazilian and Colombian Amerindian groups, while interethnic admixture could be the most important factor to explain the high number of haplotypes and high levels of diversity observed in some South-American and most North-American tribes.
Resumo:
Globin genes are subject to tissue-specific and developmental stage-specific regulation. A switch from human fetal (gamma)-to adult (beta)-globin expression occurs within erythroid precursor cells of the adult lineage. Previously we and others showed by targeted gene disruption that the zinc finger gene, erythroid Krüppel-like factor (EKLF), is required for expression of the beta-globin gene in mice, presumably through interaction with a high-affinity binding site in the proximal promoter. To examine the role of EKLF in the developmental regulation of the human gamma-globin gene we interbred EKLF heterozygotes (+/-) with mice harboring a human beta-globin yeast artificial chromosome transgene. We find that in the absence of EKLF, while human beta-globin expression is dramatically reduced, gamma-globin transcripts are elevated approximately 5-fold. Impaired silencing of gamma-globin expression identifies EKLF as the first transcription factor participating quantitatively in the gamma-globin to beta-globin switch. Our findings are compatible with a competitive model of switching in which EKLF mediates an adult stage-specific interaction between the beta-globin gene promoter and the locus control region that excludes the gamma-globin gene.
Resumo:
Agarose-encapsulated, metabolically active, permeabilized nuclei from human hematopoietic cell lines were tested for Z-DNA formation in the beta-globin gene cluster. Biotinylated monoclonal antibodies against Z-DNA were diffused into the nuclei and cross-linked to DNA with a 10-ns laser exposure at 266 nm. Following digestion with restriction enzymes, fragments that had formed Z-DNA were isolated. Seventeen regions with Z-DNA sequence motifs in the 73-kb region were studied by PCR amplification, and five were found in the Z conformation.
Resumo:
Positioned nucleosomes contribute to both the structure and the function of the chromatin fiber and can play a decisive role in controlling gene expression. We have mapped, at high resolution, the translational positions adopted by limiting amounts of core histone octamers reconstituted onto 4.4 kb of DNA comprising the entire chicken adult beta-globin gene, its enhancer, and flanking sequences. The octamer displays extensive variation in its affinity for different positioning sites, the range exhibited being about 2 orders of magnitude greater than that of the initial binding of the octamer. Strong positioning sites are located 5' and 3' of the globin gene and in the second intron but are absent from the coding regions. These sites exhibit a periodicity (approximately 200 bp) similar to the average spacing of nucleosomes on the inactive beta-globin gene in vivo, which could indicate their involvement in packaging the gene into higher-order chromatin structure. Overlapping, alternative octamer positioning sites commonly exhibit spacings of 20 and 40 bp, but not of 10 bp. These short-range periodicities could reflect features of the core particle structure contributing to the pronounced sequence-dependent manner in which the core histone octamer interacts with DNA.
Resumo:
Retrovirus-mediated gene transfer into hematopoietic cells may provide a means of treating both inherited and acquired diseases involving hematopoietic cells. Implementation of this approach for disorders resulting from mutations affecting the beta-globin gene (e.g., beta-thalassemia and sickle cell anemia), however, has been hampered by the inability to generate recombinant viruses able to efficiently and faithfully transmit the necessary sequences for appropriate gene expression. We have addressed this problem by carefully examining the interactions between retroviral and beta-globin gene sequences which affect vector transmission, stability, and expression. First, we examined the transmission properties of a large number of different recombinant proviral genomes which vary both in the precise nature of vector, beta-globin structural gene, and locus control region (LCR) core sequences incorporated and in the placement and orientation of those sequences. Through this analysis, we identified one specific vector, termed M beta 6L, which carries both the human beta-globin gene and core elements HS2, HS3, and HS4 from the LCR and faithfully transmits recombinant proviral sequences to cells with titers greater than 10(6) per ml. Populations of murine erythroleukemia (MEL) cells transduced by this virus expressed levels of human beta-globin transcript which, on a per gene copy basis, were 78% of the levels detected in an MEL-derived cell line, Hu11, which carries human chromosome 11, the site of the beta-globin locus. Analysis of individual transduced MEL cell clones, however, indicated that, while expression was detected in every clone tested (n = 17), the levels of human beta-globin treatment varied between 4% and 146% of the levels in Hu11. This clonal variation in expression levels suggests that small beta-globin LCR sequences may not provide for as strict chromosomal position-independent expression of beta-globin as previously suspected, at least in the context of retrovirus-mediated gene transfer.
Resumo:
To test whether yeast artificial chromosomes (YACs) can be used in the investigation of mammalian development, we analyzed the phenotypes of transgenic mice carrying two types of beta-globin locus YAC developmental mutants: (i) mice carrying a G-->A transition at position -117 of the A gamma gene, which is responsible for the Greek A gamma form of hereditary persistence of fetal hemoglobin (HPFH), and (ii) beta-globin locus YAC transgenic lines carrying delta- and beta-globin gene deletions with 5' breakpoints similar to those of deletional HPFH and delta beta-thalassemia syndromes. The mice carrying the -117 A gamma G-->A mutation displayed a delayed gamma- to beta-globin gene switch and continued to express A gamma-globin chains in the adult stage of development as expected for carriers of Greek HPFH, indicating that the YAC/transgenic mouse system allows the analysis of the developmental role of cis-acting motifs. The analysis of mice carrying 3' deletions first provided evidence in support of the hypothesis that imported enhancers are responsible for the phenotypes of deletional HPFH and second indicated that autonomous silencing is the primary mechanism for turning off the gamma-globin genes in the adult. Collectively, our results suggest that transgenic mice carrying YAC mutations provide a useful model for the analysis of the control of gene expression during development.
Resumo:
To analyze the function of the 5' DNase I hypersensitive sites (HSs) of the locus control region (LCR) on beta-like globin gene expression, a 2.3-kb deletion of 5'HS3 or a 1.9-kb deletion of 5'HS2 was recombined into a beta-globin locus yeast artificial chromosome, and transgenic mice were produced. Deletion of 5'HS3 resulted in a significant decrease of epsilon-globin gene expression and an increase of gamma-globin gene expression in embryonic cells. Deletion of 5'HS2 resulted in only a small decrease in expression of epsilon-, gamma-, and beta-globin mRNA at all stages of development. Neither deletion affected the temporal pattern of globin gene switching. These results suggest that the LCR contains functionally redundant elements and that LCR complex formation does not require the presence of all DNase I hypersensitive sites. The phenotype of the 5'HS3 deletion suggests that individual HSs may influence the interaction of the LCR with specific globin gene promoters during the course of ontogeny.
Resumo:
The 4-bp deletion (-CTTT) at codon 41/42 (CD41/42) of the human beta-globin gene represents one of the most common beta-thalassemia mutations in East Asia and Southeast Asia, which is historically afflicted with endemic malaria, thus hypothetically evolvi
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
beta zero-Thalassemia is an inherited disorder characterized by the absence of beta-globin polypeptides derived from the affected allele. The molecular basis for this deficiency is a mutation of the adult beta-globin structural gene or cis regulatory elements that control beta-globin gene expression. A mouse model of this disease would enable the testing of therapeutic regimens designed to correct the defect. Here we report a 16-kb deletion that includes both adult beta-like globin genes, beta maj and beta min, in mouse embryonic stem cells. Heterozygous animals derived from the targeted cells are severely anemic with dramatically reduced hemoglobin levels, abnormal red cell morphology, splenomegaly, and markedly increased reticulocyte counts. Homozygous animals die in utero; however, heterozygous mice are fertile and transmit the deleted allele to progeny. The anemic phenotype is completely rescued in progeny derived from mating beta zero-thalassemic animals with transgenic mice expressing high levels of human hemoglobin A. The beta zero-thalassemic mice can be used to test genetic therapies for beta zero-thalassemia and can be bred with transgenic mice expressing high levels of human hemoglobin HbS to produce an improved mouse model of sickle cell disease.
Resumo:
Developmental- and tissue-specific expression of globin genes is mediated by a few key elements within the proximal promoter of each gene. DNA-binding assays previously identified NF-Y, GATA-1, C/EBP beta and C/EBP gamma as candidate regulators of beta-globin transcription via the CCAAT-box, a promoter element situated between CACC- and TATA-boxes. We have identified C/EBP delta as an additional beta-globin CCAAT-box binding protein. In reporter assays, we show that C/EBP delta can co-operate with EKLF, a CACC-box binding protein, to activate the beta-globin promoter, whereas C/EBP gamma inhibits the transcriptional activity of EKLF in this assay. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Mutations in exon 3 of the CTNNB1 gene encoding beta-catenin have been reported in colorectal cancer cell lines and tumours. Although one study reported mutations or deletions affecting beta-catenin in 20% of melanoma cell lines, subsequent reports detected a much lower frequency of aberrations in uncultured melanomas. To determine whether this difference in mutation frequency reflected an in vitro culturing artefact, exon 3 of CTNNB1 was screened in a panel of 62 melanoma cell lines. In addition, reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect intragenic deletions affecting exon 3. One out of 62 (1.6%) cell lines was found to carry a mutation, indicating that aberration of the Wnt-1/wingless pathway through activation of beta-catenin is a rare event, even in melanoma cell lines.
Resumo:
The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to beta-carotene (yellow) is catalysed by lycopene beta-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene beta-cyclases (lcy-beta1 and lcy-beta2) from red (Tainung) and yellow (Hybrid 1 B) papaya cultivars. A mutation in the lcy-beta2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-beta1 and lcy-beta2 genes is similar and low in leaves, but lcy-beta2 expression increases markedly in ripe fruit. Isolation of the lcy-beta2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties.
Resumo:
Mustelidae is the largest and most diverse family in the order Carnivora. The phylogenetic relationships among the subfamilies have especially long been a focus of study. Herein we are among the first to employ two new introns (4 and 7) of the nuclear P-f