826 resultados para Best Management Practices (BMP)
Resumo:
The present study aimed to evaluate the risk of Aedes aegypti proliferation in structures used in compensatory techniques for urban drainage (Best Management PracticesBMPs). These drainage structures are utilised to reduce flood peaks due to surface runoff, and they have been used in many countries. However, many of these structures have been designed to keep water surfaces exposed for a certain period of time, depending on the type of project. Exposed water surfaces may become an ideal environment for A. aegypti proliferation in tropical and subtropical areas where the rainy season occurs during the summer. Thus, data regarding the mosquito life cycle, consecutive rainfall pattern and emptying time of these structures were collected. A comparison of these data led to the evaluation of the associated risk of A. aegypti proliferation in BMP structures. The risk of mosquito proliferation ranged from 1.1% to 3.3%, depending on the rainfall pattern, A. aegypti life cycle phase and BMP activity.
Resumo:
In 2002, AFL Queensland and the Brisbane Lions Football Club approached the Department of Primary Industries and Fisheries (Queensland) for advice on improving their Premier League sports fields. They were concerned about player safety and dissatisfaction with playing surfaces, particularly uneven turf cover and variable under-foot conditions. They wanted to get the best from new investments in ground maintenance equipment and irrigation infrastructure. Their sports fields were representative of community-standard, multi-use venues throughout Australia; generally ‘natural’ soil fields, with low maintenance budgets, managed by volunteers. Improvements such as reconstruction, drainage, or regular re-turfing are generally not affordable. Our project aimed to: (a) Review current world practice and performance benchmarks; (b) Demonstrate best-practice management for community-standard fields; (c) Adapt relevant methods for surface performance testing; (d) Assess current soils, and investigate useful amendments; (e) Improve irrigation system performance; and (e) Build industry capacity and encourage patterns for ongoing learning. Most global sports field research focuses on elite, sand-based fields. We adjusted elite standards for surface performance (hardness, traction, soil moisture, evenness, sward cover/height) and maintenance programs, to suit community-standard fields with lesser input resources. In regularly auditing ground conditions across 12 AFLQ fields in SE QLD, we discovered surface hardness (measured by Clegg Hammer) was the No. 1 factor affecting player safety and surface performance. Other important indices were turf coverage and surface compaction (measured by penetrometer). AFLQ now runs regularly audits affiliated fields, and closes grounds with hardness readings greater than 190 Gmax. Aerating every two months was the primary mechanical practice improving surface condition and reducing hardness levels to < 110 Gmax on the renovated project fields. With irrigation installation, these fields now record surface conditions comparable to elite fields. These improvements encouraged many other sporting organisations to seek advice / assistance from the project team. AFLQ have since substantially invested in an expanded ground improvement program, to cater for this substantially increased demand. In auditing irrigation systems across project fields, we identified low maintenance (with < 65% of sprinklers operating optimally) as a major problem. Retrofitting better nozzles and adjusting sprinklers improved irrigation distribution uniformity to 75-80%. Research showed that reducing irrigation frequency to weekly, and preparedness to withhold irrigation longer after rain, reduced irrigation requirement by 30-50%, compared to industry benchmarks of 5-6 ML/ha/annum. Project team consultation with regulatory authorities enhanced irrigation efficiency under imposed regional water restrictions. Laboratory studies showed incorporated biosolids / composts, or topdressed crumb rubber, improved compaction resistance of soils. Field evaluations confirmed compost incorporation significantly reduced surface hardness of high wear areas in dry conditions, whilst crumb rubber assisted turf persistence into early winter. Neither amendment was a panacea for poor agronomic practices. Under the auspices of the project Trade Mark Sureplay®, we published > 80 articles, and held > 100 extension activities involving > 2,000 participants. Sureplay® has developed a multi-level curator training structure and resource materials, subject to commercial implementation. The partnerships with industry bodies (particularly AFLQ), frequent extension activities, and engagement with government/regulatory sectors have been very successful, and are encouraged for any future work. Specific aspects of sports field management for further research include: (a) Understanding of factors affecting turf wear resistance and recovery, to improve turf persistence under wear; (b) Simple tests for pinpointing areas of fields with high hardness risk; and (c) Evaluation of new irrigation infrastructure, ‘water-saving’ devices, and irrigation protocols, in improving water use and turf cover outcomes.
Resumo:
Broadscale irrigation is a major land use in many of the priority neighbourhood catchments (45,218 hectares in Central Highlands and Dawson) and there is a requirement to provide technical support to sub-regional group field officers and landholders in these priority catchments. This technical support will assist field staff and land managers to identify and implement appropriate, sustainable technologies and management practices.
Resumo:
Several local groups have come together for this project to addresses water quality concerns in the Gabilan Watershed – also known as the Reclamation Ditch Watershed (Fig. 1.1). These are Moss Landing Marine Laboratories (MLML), the Resource Conservation District of Monterey County (RCDMC), Central Coast Watershed Studies (CCoWS), Return of the Natives (RON), Community Alliance with Family Farmers (CAFF), and Coastal Conservation and Research (CC&R). The primary goal is to reduce non-point source pollution – particularly suspended sediment, nutrients, and pesticides – and thereby improve near-shore coastal waters of Moss Landing Harbor and the Monterey Bay. (Document contains 33 pages)
Resumo:
Coastal erosion is an important and constant issue facing coastal areas all over the world today. The rate of coastal development over the years has increased, in turn requiring that action be taken to protect structures from the threat of erosion. A review of the causes of coastal erosion and the methods implemented to control it was conducted in order to determine the best course of action in response to coastal erosion issues. The potential positive and negative economic and environmental impacts are key concerns in determining whether or not to restore an eroding beach and which erosion control method(s) to implement. Results focus on providing a comparison of these concerns as well as recommendations for addressing coastal erosion issues.
Resumo:
The five installations operated by the Department of Defense (DoD) in the Front Range region of Colorado do not meet the DoD non-hazardous solid waste diversion goal of 40 percent, further impacting landfills and generating greenhouse gases. This applied capstone project identifies and evaluates best management practices of a Materials Recovery Facility (MRF), qualitatively and quantitatively, to increase solid waste diversion at a DoD MRF. An environmental benefits model quantified the externalities of increasing solid waste diversion at the installations. By implementing best management practices at a MRF, the DoD would divert an additional 1,400 tons of solid waste per year, resulting in the equivalent of 1,502,567 gallons of gasoline being saved, among many benefits presented in this capstone.
Resumo:
Includes bibliographies.
Resumo:
Best Management Practices or BMPs refer to operating techniques and good housekeeping principals for reducing and preventing environmental problems. The overall philosophy behind BMPs is to conduct everyday activities in a more environmentally sound manner. By using BMPs, a facility can help protect the environment, save money, and improve community well-being all at the same time.
Resumo:
Florida is the second leading horticulture state in the United States with a total annual industry sale of over $12 Billion. Due to its competitive nature, agricultural plant production represents an extremely intensive practice with large amounts of water and fertilizer usage. Agrochemical and water management are vital for efficient functioning of any agricultural enterprise, and the subsequent nutrient loading from such agricultural practices has been a concern for environmentalists. A thorough understanding of the agrochemical and the soil amendments used in these agricultural systems is of special interest as contamination of soils can cause surface and groundwater pollution leading to ecosystem toxicity. The presence of fragile ecosystems such as the Everglades, Biscayne Bay and Big Cypress near enterprises that use such agricultural systems makes the whole issue even more imminent. Although significant research has been conducted with soils and soil mix, there is no acceptable method for determining the hydraulic properties of mixtures that have been subjected to organic and inorganic soil amendments. Hydro-physical characterization of such mixtures can facilitate the understanding of water retention and permeation characteristics of the commonly used mix which can further allow modeling of soil water interactions. The objective of this study was to characterize some of the locally and commercially available plant growth mixtures for their hydro-physical properties and develop mathematical models to correlate these acquired basic properties to the hydraulic conductivity of the mixture. The objective was also to model the response patterns of soil amendments present in those mixtures to different water and fertilizer use scenarios using the characterized hydro-physical properties with the help of Everglades-Agro-Hydrology Model. The presence of organic amendments helps the mixtures retain more water while the inorganic amendments tend to adsorb more nutrients due to their high surface area. The results of these types of characterization can provide a scientific basis for understanding the non-point source water pollution from horticulture production systems and assist in the development of the best management practices for the operation of environmentally sustainable agricultural enterprise
Resumo:
Best management practices in green lodging are sustainable or “green” business strategies designed to enhance the lodging product from the perspective of owners, operators and guests. For guests, these practices should enhance their experience while for owners and operators, generate positive returns on investments. Best management practices in green lodging typically starts with a clear understanding of each lodging firm’s role in society, its impact on the environment and strategies developed to mitigate negative environmental externalities generated from the production of lodging goods and services. Negative externalities of hotel operations manifest themselves in energy and water usage, waste generation and air pollution. Hence, best management practices in green lodging are dynamic, cost effective, innovative, stakeholder driven and environmentally sound technical and behavioral solutions that attempt to ameliorate or eliminate the negative environmental externalities associated with lodging operations, while simultaneously generate positive returns on green investments. Thus, best management practices in green lodging should reduce lodging firms’ operating costs, increase guest satisfaction, reduce or eliminate the negative environmental impacts associated with hotel operations while simultaneously enhance business operations.
Resumo:
Best management practices in green lodging are sustainable or “green” business strategies designed to enhance the lodging product from the perspective of owners, operators and guests. For guests, these practices should enhance their experience while for owners and operators, generate positive returns on investments. Best management practices in green lodging typically starts with a clear understanding of each lodging firm’s role in society, its impact on the environment and strategies developed to mitigate negative environmental externalities generated from the production of lodging goods and services. Negative externalities of hotel operations manifest themselves in energy and water usage, waste generation and air pollution. Hence, best management practices in green lodging are dynamic, cost effective, innovative, stakeholder driven and environmentally sound technical and behavioral solutions that attempt to ameliorate or eliminate the negative environmental externalities associated with lodging operations, while simultaneously generate positive returns on green investments. Thus, best management practices in green lodging should reduce lodging firms’ operating costs, increase guest satisfaction, reduce or eliminate the negative environmental impacts associated with hotel operations while simultaneously enhance business operations.
Resumo:
The Mara River in East Africa is currently experiencing poor water quality and increased fluctuations in seasonal flow. This study investigated technically effective and economically viable Best Management Practices for adoption in the Mara River Basin of Kenya that can stop further water resources degradation. A survey of 155 farmers was conducted in the upper catchment of the Kenyan side of the river basin. Farmers provided their assessment of BMPs that would best suit their farm in terms of water quality improvement, economic feasibility, and technicalsuitability. Cost data on different practices from farmers and published literature was collected. The results indicated that erosion control structures and runoff management practices were most suitable for adoption. The study estimated the total area that would be improved to restore water quality and reduce further water resources degradation. Farmers were found to incur losses from adopting new practices and would therefore require monetary support.