591 resultados para Bergmann, Frithjof
Resumo:
Aim To measure latitude-related body size variation in field-collected Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) individuals and to conduct common-garden experiments to determine whether such variation is due to phenotypic plasticity or local adaptation. Location Four collection sites from the east coast of Australia were selected for our present field collections: Canberra (latitude 35°19' S), Bangalow (latitude 28°43' S), Beerburrum (latitude 26°58' S) and Lowmead (latitude 24°29' S). Museum specimens collected over the past 100 years and covering the same geographical area as the present field collections came from one state, one national and one private collection. Methods Body size (pronotum width) was measured for 118 field-collected beetles and 302 specimens from collections. We then reared larvae from the latitudinal extremes (Canberra and Lowmead) to determine whether the size cline was the result of phenotypic plasticity or evolved differences (= local adaptation) between sites. Results Beetles decreased in size with increasing latitude, representing a converse Bergmann cline. A decrease in developmental temperature produced larger adults for both Lowmead (low latitude) and Canberra (high latitude) individuals, and those from Lowmead were larger than those from Canberra when reared under identical conditions. Main conclusions The converse Bergmann cline in P. atomaria is likely to be the result of local adaptation to season length.
Resumo:
Photocopies of poems
Resumo:
Aim: To describe the geographical pattern of mean body size of the non-volant mammals of the Nearctic and Neotropics and evaluate the influence of five environmental variables that are likely to affect body size gradients. Location: The Western Hemisphere. Methods: We calculated mean body size (average log mass) values in 110 × 110 km cells covering the continental Nearctic and Neotropics. We also generated cell averages for mean annual temperature, range in elevation, their interaction, actual evapotranspiration, and the global vegetation index and its coefficient of variation. Associations between mean body size and environmental variables were tested with simple correlations and ordinary least squares multiple regression, complemented with spatial autocorrelation analyses and split-line regression. We evaluated the relative support for each multiple-regression model using AIC. Results: Mean body size increases to the north in the Nearctic and is negatively correlated with temperature. In contrast, across the Neotropics mammals are largest in the tropical and subtropical lowlands and smaller in the Andes, generating a positive correlation with temperature. Finally, body size and temperature are nonlinearly related in both regions, and split-line linear regression found temperature thresholds marking clear shifts in these relationships (Nearctic 10.9 °C; Neotropics 12.6 °C). The increase in body sizes with decreasing temperature is strongest in the northern Nearctic, whereas a decrease in body size in mountains dominates the body size gradients in the warmer parts of both regions. Main conclusions: We confirm previous work finding strong broad-scale Bergmann trends in cold macroclimates but not in warmer areas. For the latter regions (i.e. the southern Nearctic and the Neotropics), our analyses also suggest that both local and broad-scale patterns of mammal body size variation are influenced in part by the strong mesoscale climatic gradients existing in mountainous areas. A likely explanation is that reduced habitat sizes in mountains limit the presence of larger-sized mammals.
Resumo:
Signatur des Originals: S 36/F12034
Resumo:
Signatur des Originals: S 36/G03932
Resumo:
Glutamate transporters in the central nervous system are expressed in both neurons and glia, they mediate high affinity, electrogenic uptake of glutamate, and they are associated with an anion conductance that is stoichiometrically uncoupled from glutamate flux. Although a complete cycle of transport may require 50–100 ms, previous studies suggest that transporters can alter synaptic currents on a much faster time scale. We find that application of l-glutamate to outside-out patches from cerebellar Bergmann glia activates anion-potentiated glutamate transporter currents that activate in <1 ms, suggesting an efficient mechanism for the capture of extrasynaptic glutamate. Stimulation in the granule cell layer in cerebellar slices elicits all or none α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor and glutamate transporter currents in Bergmann glia that have a rapid onset, suggesting that glutamate released from climbing fiber terminals escapes synaptic clefts and reaches glial membranes shortly after release. Comparison of the concentration dependence of both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor and glutamate transporter kinetics in patches with the time course of climbing fiber-evoked responses indicates that the glutamate transient at Bergmann glial membranes reaches a lower concentration than attained in the synaptic cleft and remains elevated in the extrasynaptic space for many milliseconds.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (doctoral)--Konigliche Friedrich-Wilhelms-Universitat, Berlin.
Resumo:
We are grateful for very useful comments and criticism on drafts of this paper to Michael Bergmann, Chris Tucker, a referee of this Journal and audience at the conference Philosophy, Analysis and Public Engagement, University of L’Aquila, 3–5 September 2014. The final draft of this paper was written at the Munich Center for Mathematical Philosophy (MCMP). The authors thank the MCMP for hosting them and for providing a stimulating atmosphere to conduct this research.
Resumo:
We are grateful for very useful comments and criticism on drafts of this paper to Michael Bergmann, Chris Tucker, a referee of this Journal and audience at the conference Philosophy, Analysis and Public Engagement, University of L’Aquila, 3–5 September 2014. The final draft of this paper was written at the Munich Center for Mathematical Philosophy (MCMP). The authors thank the MCMP for hosting them and for providing a stimulating atmosphere to conduct this research.