974 resultados para Benthic diatoms
Resumo:
In this paper, the background to the development of an analytical quality control procedure for the Trophic Diatom Index (TDI) is explained, highlighting some of the statistical and taxonomic problems encountered, and going on to demonstrate how the system works in practice. Most diatom-based pollution indices, including the TDI, use changes in the relative proportions of different taxa to indicate changing environmental conditions. The techniques involved are therefore much simpler than those involved in many studies of phytoplankton, for example, where absolute numbers are required.
Resumo:
Benthic diatom communities were sampled monthly from May 2004 to May 2005 at four different sites in the littoral zone of Lake Donghu, a shallow eutrophic lake of China. The seasonal patterns of the total abundance, which were lowest in summer and highest in spring, were found at all sites. Total densities of diatom assemblages were significantly higher at hyper-eutrophic sites than at moderately eutrophic sites. Melosira varians was the most abundant species and dominant contributor to total abundance at all sites during spring, autumn and winter, whereas Achnanthes exigua dominated benthic diatom assemblages at the site with the highest nutrient concentrations during the summer. Achnanthes lanceolata var. dubia, Gomphonema parvulum, Navicula similis, Navicula verecunda and Nitzschia amphibia were generally observed at all sites throughout the year and were dominant at higher-nutrient sites. The abundance of ambient nutrients was probably responsible for the spatial variation in biomass, composition and diversity of benthic diatom assemblages, and lake water temperature was the major factor that controlled seasonal distribution.
Resumo:
The sustained absorption of anthropogenically released atmospheric CO2 by the oceans is modifying seawater carbonate chemistry, a process termed ocean acidification (OA). By the year 2100, the worst case scenario is a decline in the average oceanic surface seawater pH by 0.3 units to 7.75. The changing seawater carbonate chemistry is predicted to negatively affect many marine species, particularly calcifying organisms such as coralline algae, while species such as diatoms and fleshy seaweed are predicted to be little affected or may even benefit from OA. It has been hypothesized in previous work that the direct negative effects imposed on coralline algae, and the direct positive effects on fleshy seaweeds and diatoms under a future high CO2 ocean could result in a reduced ability of corallines to compete with diatoms and fleshy seaweed for space in the future. In a 6-week laboratory experiment, we examined the effect of pH 7.60 (pH predicted to occur due to ocean acidification just beyond the year 2100) compared to pH 8.05 (present day) on the lateral growth rates of an early successional, cold-temperate species assemblage dominated by crustose coralline algae and benthic diatoms. Crustose coralline algae and benthic diatoms maintained positive growth rates in both pH treatments. The growth rates of coralline algae were three times lower at pH 7.60, and a non-significant decline in diatom growth meant that proportions of the two functional groups remained similar over the course of the experiment. Our results do not support our hypothesis that benthic diatoms will outcompete crustose coralline algae under future pH conditions. However, while crustose coralline algae were able to maintain their presence in this benthic rocky reef species assemblage, the reduced growth rates suggest that they will be less capable of recolonizing after disturbance events, which could result in reduced coralline cover under OA conditions.
Resumo:
The structure of intertidal benthic diatoms assemblages in the Tagus estuary was investigated during a 2-year survey, carried out in six stations with different sediment texture. Nonparametric multivariate analyses were used to characterize spatial and temporal patterns of the assemblages and to link them to the measured environmental variables. In addition, diversity and other features related to community physiognomy, such as size-class or life-form distributions, were used to describe the diatom assemblages. A total of 183 diatom taxa were identified during cell counts and their biovolume was determined. Differences between stations (analysis of similarity (ANOSIM), R=0.932) were more evident than temporal patterns (R=0.308) and mud content alone was the environmental variable most correlated to the biotic data (BEST, rho=0.863). Mudflat stations were typically colonized by low diversity diatom assemblages (H' similar to 1.9), mainly composed of medium-sized motile epipelic species (250-1,000 mu m(3)), that showed species-specific seasonal blooms (e.g., Navicula gregaria Donkin). Sandy stations had more complex and diverse diatom assemblages (H' similar to 3.2). They were mostly composed by a large set of minute epipsammic species (<250 mu m(3)) that, generally, did not show temporal patterns. The structure of intertidal diatom assemblages was largely defined by the interplay between epipelon and epipsammon, and its diversity was explained within the framework of the Intermediate Disturbance Hypothesis. However, the spatial distribution of epipelic and epipsammic life-forms showed that the definition of both functional groups should not be over-simplified.
Resumo:
A study on the benthic ecosystem health was performed to assess the environmental quality of Montevideo coastal zone, in view of the construction of a new sanitation system. Data were compared to previous research undertaken 10 years ago, and biochemical composition of organic matter, heavy metals, organic matter, phytopigments, benthic diatoms, macrofauna community structure and a biotic index (AMBI) were used as proxies. Results indicate an environmental quality-gradient, with the worst conditions within the inner stations of Montevideo Bay and an improvement towards the adjacent coastal zone. Higher levels of chromium, lead, phaeopigments, organic biopolymers and poor benthic macrofauna and diatom communities, characterised the hypertrophic innermost portion of Montevideo Bay. Data indicated a clear deterioration of the adjacent coastal zone comparatively to that observed 10 years ago. The complementary use of approaches not applied before (benthic diatoms and organic biopolymers) with those formerly applied improve our assessment of the trophic status and the environmental health of the area. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this research the taxonomic structure of diatoms in sediments of high mountain lakes was studied. These lakes are located in Chile between 32°49' and 38°48' S in the Andean Cordillera. A total of 99 diatom taxa distributed in 48 genera were identified and all this taxa are cosmopolitan excepting a Eunotia andinofrequens, Gomphonema punae, Pinnularia araucanensis and Pinnularia acidicola, which are know only for the Southern Hemisphere. The assemblages of diatoms were different in the studied lakes. So the high mountain lakes Ocho, Huifa, Ensueño and Negra, dominated benthic diatoms which are typical of oligotrophic and acid waters as Achnanthidium exiguum, Achnanthidium minutissimum, Encyonema minutum, Pinnularia acidicola and Planothidium lanceolatum. In the assemblages from lakes Galletué, Icalma and Laja planktonic diatoms were more abundant, which are common in alkaline and mesotrophic waters, e.g., Asterionella formosa, Aulacoseira distans, Aulacoseira granulata, Cyclotella stelligera and Rhopalodia gibba.
Resumo:
Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4*preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily (daytime pH = 8.45, night-time pH = 7.65) and daily (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults' response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.
Resumo:
The occurrence of diatom species in the Eocene-Oligocene sections of Ocean Drilling Program (ODP) Leg 115 sites and Deep Sea Drilling Project (DSDP) Sites 219 and 236 in the low-latitude Indian Ocean are investigated. Diatoms are generally rare and poorly preserved in the Paleogene sequences we studied. The best-preserved assemblages are found close to ash layers in early Oligocene sediments. The low-latitude diatom zonation established for the Atlantic region by Fenner in 1984 is fully applicable to the Paleogene sequences of the western Indian Ocean. Correlation of the diatom zones to the calcareous nannofossil stratigraphy of the sites places the Coscinodiscus excavatus Zone of Fenner within calcareous nannofossil Subzone CP16b. For the Mascarene Plateau and the Chagos Ridge, the times when the sites studied, together with the areas upslope from them, subsided to below the euphotic zone are deduced from changes in the relative abundance between the group of benthic, shallow-water species and Grammatophora spp. vs. the group of fully planktonic diatom species. The Eocene section of Site 707, on the Mascarene Plateau, is characterized by the occurrence of benthic diatoms (approximately 10% of the diatom assemblage). These allochthonous diatoms must have originated from shallow-water environments around volcanic islands that existed upslope from ODP Site 707 in Eocene times. In Oligocene and younger sediments of Sites 707 and 706, occurrences of benthic diatoms are rare and sporadic and interpreted as reworked from older sediments. This indicates that the area upslope from these two Mascarene Plateau sites had subsided below the euphotic zone by the early Oligocene. Only Grammatophora spp., for which a neritic but not benthic habitat is assumed, continues to be abundant throughout the Oligocene sequences. The area of the Madingley Rise sites (Sites 709-710) and nearby shallower areas subsided below the euphotic zone already in middle Eocene times, as benthic diatoms are almost absent from these Eocene sections. Only sites located on abyssal plains, and which intermittently received turbidite sediments (e.g., Sites 708 and 711), contain occasionally single, benthic diatoms of Oligocene age. The occurrence of the freshwater diatom Aulacosira granulata in a few samples of late early Oligocene and late Oligocene age at Sites 707, 709, and 714 is interpreted as windblown. Their presence indicates at least seasonally arid conditions for these periods in the source areas of eastern Africa and India. Three new species and two new combinations are defined: Chaetoceros asymmetricus Fenner sp. nov.; Hemiaulus gracilis Fenner, sp. nov.; Kozloviella meniscosa Fenner, sp. nov.; Cestodiscus demergitus (Fenner) Fenner comb, nov.; and Rocella princeps (Jouse) Fenner comb. nov.