971 resultados para Benthic density and biomass
Resumo:
Rupertina stabilis occupies a depth restricted biotope of suspension feeding animals situated at the Norwegian continental margin. It extends from the Voring plateau northwards for at least 200 - 300 km, in depths between 600 and 800 m. This slope position is known for relatively strong bottom currents and shifting watermass boundaries. - The species is attached to hard substrates, mainly stones or hydroid stalks and obviously prefers an elevated position. It is building a permanent cyst of sponge spicules and debris at the apertural region. The spicules are used to support a pseudopodial network similar to that described from Halyphysema (LIPPS 1983). It is believed to serve as a filter apparatus. - A review of known occurences in the Atlantic is given, suggesting a temperature adaption of the species ranging from 0°C to a maximum of 8°C. Specimens were successfully cultured for about 2-3 weeks.
Resumo:
This study examines the ecology of a population of Geoffroy's side-necked turtle Phrynops geoffroanus inhabiting a polluted urban river in Ribeirão Preto city, São Paulo state, south-eastern Brazil. Adult turtles fed mainly on Chironomidae larvae and pupae (Chironomus cf. plumosus, 100% of occurrence frequency) and domestic waste, but they also consumed terrestrial items (cockroach, snails) and carrion. Juvenile turtles showed more feeding diversity than the adults and exhibited a trend for predation on Chironomidae pupae, but this is not reflected in resource partitioning. The elevated number of turtles (170-230 turtles/ha of river) and biomass (255-345 kg/ha of river) inhabiting this urban river is probably the result of the abundance of sewage and organic waste produced by humans, the absence of predators, and increased availability of nesting areas. Such factors convert this area into an environment highly advantageous for the survival of Geoffroy's side-necked turtle.
Resumo:
A distribuição espacial e temporal da densidade e biomassa dos copépodos planctônicos Pseudodiaptomus richardi e P. acutus, ao longo de um gradiente de salinidade, foi estudada no Estuário do Rio Caeté (Norte do Brasil) durante os meses de junho e dezembro de 1998 (estação seca) e fevereiro e maio de 1999 (estação chuvosa). A biomassa dos copépodos foi estimada a partir de parâmetros da regressão baseada na relação entre o peso seco e o comprimento do corpo (prossoma) de organismos adultos. O Estuário do Rio Caeté caracterizou-se por uma grande variação espacial e sazonal na salinidade (0,8-37,2). A relação peso-comprimento para ambas as espécies de Pseudodiaptomus foi do tipo exponencial. Os valores de densidade e biomassa oscilaram entre 0,28-46,18 ind. m-3 e 0,0022-0,3507 mg DW. m-3 para P. richardi; e entre 0,01-17,02 ind. m-3 e 0,0005-0,7181 mg DW. m-3 para P. acutus. Os resultados revelaram que a contribuição de P. richardi para a produção secundária no Estuário do Rio Caeté é mais importante na zona liminética que em outras zonas onde foram dominantes os regimes eurihalino-polihalino. Contudo, para P. acutus não foi possível observar de forma clara um padrão de distribuição espacial e temporal para a área estudada.
Resumo:
The relative importance of small forms of copepods has been historically underestimated by the traditional use of 200-300-µm mesh nets. This work quantified the distribution and abundance of copepods, considering two size fractions (<300 µm and >300 µm), in superficial waters (9 m deep) of the Drake Passage and contributed to the knowledge of their interannual fluctuations among three summers. Four types of nauplii and eleven species of copepods at copepodite and adult stages were identified, with abundance values of up to 13 ind/L and 28,300 µg C/m**3. The <300-µm fraction, composed of Oithona similis, small cyclopoids and nauplii, dominated the copepod communities in the 3 years; it accounted for more than 77% of the total number and for between 40 and 63% of the total biomass. Changes in density and biomass values among the three cruises differed according to copepod size fraction and water mass; the >300-µm fraction showed no changes among the 3 years, both in Antarctic (density and biomass) and in Subantarctic waters (density), whereas the <300-µm fraction showed higher (density and biomass) values in 2001 both in Subantarctic and in Antarctic waters. Sea surface temperature and its anomaly accounted for the largest proportion of variability in copepod density and biomass, particularly for the <300-µm fraction.
Resumo:
The natural phytoplankton was monitored by means of fluorimetric equipment in Vostok Bay of the Sea of Japan. A gradual increase in the microalgae abundance was revealed in the course of the main water current, which enters the bay and leaves it. The continuous registration of chlorophyll fluorescence at a fixed point in the bay indicates the significant microscale variation of the abundance and functional state of the phytoplankton.
Resumo:
Effect of environmental factors on the growth of the Chlorella vulgaris was studied. C. vulgaris was cultivated in sterilized natural seawater enriched with F/2-Si medium. Then grow in bucket, tub and photobioreactor (PBR) in outdoor condition. The daily routine work consisted of culture checkups of optical density, biomass gains, atmosphere lux, culture lux, atmosphere temperature and culture temperature were recorded. The highest biomass yields were (3.0 μg/ml-1) in December and (2.01 μg/ml-1) in November in PBR. The highest deviation was in atmosphere lux in time 8:30 (± 117.7) and lowest deviation was in atmosphere temperature in time 15:00 (± 1.0499). Optical density (OD) indicated that the best growth of C. vulgaris in outdoor condition was obtained in 650 lux and also it increased with increasing amount of lux. Tub report of C. vulgaris showed different growing behaviors at the various concentration of light and at the different temperatures. Algal production in outdoor PBR is relatively inexpensive, but is only suitable for a few, fast-growing specie. Finally, this fact is noteworthy that in outdoor conditions, temperature and light have important role in growth of C. vulgaris in present study.
Resumo:
Sediment samples collected during the expedition "Arctic Ocean '96" with the Swedish ice-breaker ODEN were investigated to estimate for the first time heterotrophic activity and total microbial biomass (size range from bacteria to small metazoans) from the perennially ice-covered central Arctic Ocean. Benthic activities and biomass were evaluated analysing a series of biogenic sediment compounds (i.e. bacterial exoenzymes, total adenylates, DNA, phospholipids, particulate proteins). In contrast to the very time-consuming sorting, enumeration and weight determination, analyses of biochemical sediment parameters may represent a useful method for obtaining rapid information on the ecological situation in a given benthic system. Bacterial cell numbers and biomass were estimated for comparison with biochemically determined biomass data, to evaluate the contribution of the bacterial biomass to the total microbial biomass. It appeared that bacterial biomass made up only 8-31% (average of all stations = 20%) of the total microbial biomass, suggesting a large fraction of other small infaunal organisms within the sediment samples (most probably fungi, yeasts, protozoans such as flagellates, ciliates or amoebae, as well as a fraction of small metazoans). Activity and biomass values determined within this study were generally extremely low, and often even slightly lower than those given for other deep oceanic regions, thus characterizing the seafloor of the central Arctic Ocean as a "benthic desert". Nevertheless, some clear trends in the data could be found, e.g. generally sharply decreasing values within the sediment column, a vague tendency for declining values with increasing water depth of sampling stations, and also differences between various Arctic deep-sea regions.
Resumo:
A large spatial scale study of the diatom species inhabiting waters from the subantarctic (Argentine shelf) to antarctic was made for the first time in order to understand the relationships between these two regions with regard to the fluctuations in diatom abundances in relation with environmental features, their floristic associations and the effect of the Polar Front as a biogeographic barrier. Species-specific diatom abundance, nutrient and chlorophyll-a concentration were assessed from 64 subsurface oceanographic stations carried out during the austral summer 2002, a period characterized by an anomalous sea-ice coverage corresponding to a ''warm year". Significant relationships of both diatom density and biomass with chlorophyll-a (positive) and water temperature (negative) were found for the study area as a whole. Within the Subantarctic region, diatom density and biomass values were more uniform and significantly (in average: 35 and 11 times) lower than those of the Antarctic region, and did not correlate with chlorophyll-a. In antarctic waters, instead, biomass was directly related with chlorophyll-a, thus confirming the important contribution of diatoms to the Antarctic phytoplanktonic stock. A total of 167 taxa were recorded for the entire study area, with Chaetoceros and Thalassiosira being the best represented genera. Species richness was maximum in subantarctic waters (46; Argentine shelf) and minimum in the Antarctic region (21; Antarctic Peninsula), and showed a significant decrease with latitude. Floristic associations were examined both qualitatively (Jaccard Index) and quantitatively (correlation) by cluster analyses and results allowed differentiating a similar number of associations (12 vs. 13, respectively) and two main groups of stations. In the Drake Passage, the former revealed that the main floristic change was found at the Polar Front, while the latter reflected the Southern ACC Front as a main boundary, and yielded a higher number of isolated sites, most of them located next to different Antarctic islands. Such differences are attributed to the high relative density of Fragilariopsis kerguelensis in Argentine shelf and Drake Passage waters and of Porosira glacialis and species of Chaetoceros and Thalasiosira in the Weddell Sea and near the Antarctic Peninsula. From a total of 84 taxa recorded in antarctic waters, only 17 were found exclusively in this region, and the great majority (67) was also present in subantarctic waters but in extremely low (< 1 cell/l) concentrations, probably as a result of expatriation processes via the ACC-Malvinas Current system. The present results were compared with those of previous studies on the Antarctic region with respect to both diatom associations in regular vs. atypically warm years, and the distribution and abundance of some selected planktonic species reported for surface sediments.
Resumo:
The capacity of epifauna to control algal proliferation following nutrient input depends on responses of both grazers and upper trophic level consumers to enrichment. We examined the responses of Thalassia testudinum (turtle grass) epifaunal assemblages to nutrient enrichment at two sites in Florida Bay with varying levels of phosphorus limitation. We compared epifaunal density, biomass, and species diversity in 2 m2 plots that had either ambient nutrient concentrations or had been enriched with nitrogen and phosphorus for 6 months. At the severely P-limited site, total epifaunal density and biomass were two times higher in enriched than in unenriched plots. Caridean shrimp, grazing isopods, and gammarid amphipods accounted for much of the increase in density; brachyuran crabs, primary predatory fish, and detritivorous sea cucumbers accounted for most of the increase in biomass. At the less P-limited site, total epifaunal density and biomass were not affected by nutrient addition, although there were more caridean shrimp and higher brachyuran crab and pink shrimp biomass in enriched plots. At both sites, some variation in epifaunal density and biomass was explained by features of the macrophyte canopy, such as T. testudinum and Halodule wrightii percent cover, suggesting that enrichment may change the refuge value of the macrophyte canopy for epifauna. Additional variation in epifaunal density and biomass was explained by epiphyte pigment concentrations, suggesting that enrichment may change the microalgal food resources that support grazing epifauna. Increased epifaunal density in enriched plots suggests that grazers may be able to control epiphytic algal proliferation following moderate nutrient input to Florida Bay.
Resumo:
This thesis Entitled studies on the macrobenthic community of cochin backwaters with special reference to culture of eriopisa chilkensis (Gammaridae- amphipoda).Benthic organisms are usually studied for environmental impact assessment, pollution control and resource conservation. The benthic monitoring component has three major objectives: 1) characterize the benthic communities to assess the estuarine health, 2) determine seasonal and spatial variability in benthic communities, and 3) detect changes in the estuarine community through examination of changes in abundances of specific indicator taxa and other standard benthic indices.Cochin backwaters situated at the tip of the northern Vembanad lake is a tropical positive estuarine system. The backwaters of Kerala support as much biological productivity and diversity as tropical rain forest and are responsible for the rich fishery potential of Kerala. Backwaters also act as nursery grounds for commercially important prawns and fishes.The thesis has been subdivided into seven chapters. The first chapter gives a general introduction about the topic and also highlights the scope and purpose of the study. The second chapter covers the methodology adopted for the collection and analysis of water quality parameters, sediment and the macrobenthic fauna.Chapter 3 deals with hydrographic features, sediment characteristics and the spatial variation and abundance of macrobenthic fauna in the Cochin estuary.Chapter 4 explains the impact of organic enrichment on macrobenthic popUlation in the Cochin estuary and includes the comparison of the present data with the earlier work in this region.Chapter 5 deals with seasonal variability in abundance of macrobenthic species in the estuary. The study was conducted from 9 stations during three seasons (pre-monsoon, monsoon and post-monsoon) in 2003.Chapter 6 deals with Life history and Population Dynamics of Eriopisa chilkensis Chilton (Gammaridae-Amphipoda). The life cycle of the gammarid amphipod Eriopisa chilkensis from the Cochin estuary, south west coast of India was studied for the first time under laboratory conditions.
Resumo:
Lar lake, with the international UTM specification of 39S 579680 3976567 & 39S 589930 3976184 is Situated in Lar national Park with an aerial distance of 55 Km of Tehran along Haraz road. The present research is carried out as part of a comprehensives Plan for assessment of bioresearches of Lar lake & the rivers flowing into it. This research includes examination of there benthic Samplings performed in Lar lake and each of the related rivers including Delichaee, Ab-e-sefid , Alarm & Lar (Kamardasht).Tubifex and Chironomus genus were found to have the highest frequencies of occurrence in the lake with %77.117 & %21.823 respectively followed by Chironomidae and Simulidae from the Diptera order which accounted for %72.328 and %13.812 occurrences in four rivers examined in the Study. The benthic biomass at various examined Sites and the average wet weight of the benthic biomass in station No one in the lake Was 17.397g and the figure for the examined site in Alarm was 20.242 g which were the highest level among Other examination stations the index for the abundance of species in Alarm river was greater than the rest of the examined rivers with 12.57. A sum of 354 Pieces of brown trouts was caught in the course of sampling which were closely investigated in terms of their digestive tract Content. It was identified that Daphniidae and Chironomus constituted the bulk of eaten items from the lake with %17.985 and %63.973 respectively. Meanwhile, Chironomidae and Simuladae were the most frequently eanten benthos by the fish with %81.47 and %7.93 respectively.The index for the relative length of gut was recorded at 0.49± 0.08 which is well indicative of the carnivorous diet of the fish.The index for the feeding intensity amounted to 138 83 showing that the one year old fish were of more feeding intensity.The coefficient of condition (K) was estimated at 1.02 0.142 for all the caught fish. The average wet weight of the benthos was 10.348 g per square meter which if extended to 700ha surface area of the lake, the total macrobenthic production in the lake would amount to 72730Kg of wet weight or 6510 Kg of dry weight. Since the Secondary Production of macrobenthos have always been double that of their biomass, it is reasonable to assume that the Secondary Production of macrobenthos amount to 145640 Kg by their wet weight and Since the energy transfer in the food chain of the lake from benthos to fish is 10 percent, the fish production Capacity Coming from benthic resources of the lake (Lar) would be 14.5 MT, half of which (7000-8000MT) could annually be harvested. Further more, the actual fish Production Capacity might exceed the projected level Since Daphnia, Rotifers and Ostracoda which belong to Zooplanktons, play a part in the natural diet of trout. Meanwhile, rivers Play a major role in fish nutrition and the annual fish production in Delichaee river is about 4481.8Kg while the figures for Ab-e-sefid, Alerm and Lar rivers are 2370.7 4848.7 and 2586.2 Kg respectively, that further increase fish Production in the area and every year half of these resources can be exploitable from the river & the lake.Nevertheless, due to ecological & biological importance of rivers and the probability of environmental Pollution, devastation of natural fish habitats & their nursery grounds, Sport fishing is not recommended at all.
Resumo:
Cyperus iria is a weed of rice with widespread occurrence throughout the world. Because of concerns about excessive and injudicious use of herbicides, cultural weed management approaches that are safe and economical are needed. Developing such approaches will require a better understanding of weed biology and ecology, as well as of weed response to increases in crop density and nutrition. Knowledge of the effects of nitrogen (N) fertilizer on crop-weed competitive interactions could also help in the development of integrated weed management strategies. The present study was conducted in a screenhouse to determine the effects of rice planting density (0, 5, 10, and 20 plants pot−1) and N rate (0, 50, 100, and 150 kg ha−1) on the growth of C. iria. Tiller number per plant decreased by 73–88%, leaf number by 85–94%, leaf area by 85–98%, leaf biomass by 92–99%, and inflorescence biomass by 96–99% when weed plants were grown at 20 rice plants pot−1 (i.e., 400 plants m−2) compared with weed plants grown alone. All of these parameters increased when N rates were increased. On average, weed biomass increased by 118–389% and rice biomass by 121–275% with application of 50–150 kg N ha−1, compared to control. Addition of N favored weed biomass production relative to rice biomass. Increased N rates reduced the root-to-shoot weight ratio of C. iria. Rice interference reduced weed growth and biomass and completely suppressed C. iria when no N was applied at high planting densities (i.e., 20 plants pot−1). The weed showed phenotypic plasticity in response to N application, and the addition of N increased the competitive ability of the weed over rice at densities of 5 and 10 rice plants pot−1 compared with 20 plants pot−1. The results of the present study suggest that high rice density (i.e., 400 plants m−2) can help suppress C. iria growth even at high N rates (150 kg ha−1).
Resumo:
Information on long-term temporal variability of and trends in benthic community-structure variables, such as biomass, is needed to estimate the range of normal variability in comparison with the effects of environmental change or disturbance. Fishery resource distribution and population growth will be influenced by such variability. This study examines benthic macrofaunal biomass and related data collected annually between 1978 and 1985 at 27 sites on the continental shelf of the northwestern Atlantic, from North Carolina to the southern Gulf of Maine. The study was expanded at several sites with data from other studies collected at the same sites prior to 1978. Results indicate that although there was interannual and seasonal variability, as expected, biomass levels over the study period showed few clear trends. Sites exhibiting trends were either in pollution-stressed coastal areas or influenced by the population dynamics of one or a few species, especially echinoderms. (PDF file contains 34 pages.)