973 resultados para Benthic Microalgae
Resumo:
Marine viruses have been shown to affect phytoplankton productivity; however, there are no reports on the effect of viruses on benthic microalgae (microphytobenthos). Hence, this study investigated the effects of elevated concentrations of virus-like particles on the photosynthetic physiology and community composition of benthic microalgae and phytoplankton. Virus populations were collected near the sediment surface and concentrated by tangential flow ultrafiltration, and the concentrate was added to benthic and water column samples that were obtained along a eutrophication gradient in the Brisbane River/Moreton Bay estuary, Australia. Photosynthetic and community responses of benthic microalgae, phytoplankton and bacteria were monitored over 7 d in aquaria and in situ. Benthic microalgal communities responded to viral enrichment in both eutrophic and oligotrophic sediments. In eutrophic sediments, Euglenophytes (Euglena sp.) and bacteria decreased in abundance by 20 to 60 and 26 to 66%, respectively, from seawater controls. In oligotrophic sediments, bacteria decreased in abundance by 30 to 42% from seawater controls but the dinoflagellate Gymnodinium sp. increased in abundance by 270 to 3600% from seawater controls, The increased abundance of Gymnodinium sp. may be related to increased availability of dissolved organic matter released from lysed bacteria. Increased (140 to 190% from seawater controls) initial chlorophyll a fluorescence measured with a pulse-amplitude modulated fluorometer was observed in eutrophic benthic microalgal incubations following virus enrichment, consistent with photosystem II damage. Virus enrichment in oligotrophic water significantly stimulated carbon fixation rates, perhaps due to increased nutrient availability by bacterial lysis. The interpretation of data from virus amendment experiments is difficult due to potential interaction with unidentified bioactive compounds within seawater concentrates. However, these results show that viruses are capable of influencing microbial dynamics in sediments.
Resumo:
Understanding the ecological role of benthic microalgae, a highly productive component of coral reef ecosystems, requires information on their spatial distribution. The spatial extent of benthic microalgae on Heron Reef (southern Great Barrier Reef, Australia) was mapped using data from the Landsat 5 Thematic Mapper sensor. integrated with field measurements of sediment chlorophyll concentration and reflectance. Field-measured sediment chlorophyll concentrations. 2 ranging from 23-1.153 mg chl a m(2), were classified into low, medium, and high concentration classes (1-170, 171-290, and > 291 mg chl a m(-2)) using a K-means clustering algorithm. The mapping process assumed that areas in the Thematic Mapper image exhibiting similar reflectance levels in red and blue bands would correspond to areas of similar chlorophyll a levels. Regions of homogenous reflectance values corresponding to low, medium, and high chlorophyll levels were identified over the reef sediment zone by applying a standard image classification algorithm to the Thematic Mapper image. The resulting distribution map revealed large-scale ( > 1 km 2) patterns in chlorophyll a levels throughout the sediment zone of Heron Reef. Reef-wide estimates of chlorophyll a distribution indicate that benthic Microalgae may constitute up to 20% of the total benthic chlorophyll a at Heron Reef. and thus contribute significantly to total primary productivity on the reef.
Resumo:
Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing CO2 levels on the colonisation of artificial substrata by microalgal assemblages (periphyton) were examined across a CO2 gradient off the volcanic island of Vulcano (NE Sicily). We show that periphyton communities altered significantly as CO2 concentrations increased. CO2 enrichment caused significant increases in chlorophyll a concentrations and in diatom abundance although we did not detect any changes in cyanobacteria. SEM analysis revealed major shifts in diatom assemblage composition as CO2 levels increased. The responses of benthic microalgae to rising anthropogenic CO2 emissions are likely to have significant ecological ramifications for coastal systems.
Resumo:
The abundance and productivity of benthic microalgae in coral reef sediments are poorly known compared with other, more conspicuous (e.g. coral zooxanthellae, macroalgae) primary producers of coral reef habitats. A survey of the distribution, biomass, and productivity of benthic microalgae on a platform reef flat and in a cross-shelf transect in the southern Great Barrier Reef indicated that benthic microalgae are ubiquitous, abundant (up to 995.0 mg chlorophyll (chl) a m(-2)), and productive (up to 110 mg O-2 m(-2) h(-1)) components of the reef ecosystem. Concentrations of benthic microalgae, expressed as chlorophyll a per surface area, were approximately 100-fold greater than the integrated water column concentrations of microalgae throughout the region. Benthic microalgal biomass was greater on the shallow water platform reef than in the deeper waters of the cross-shelf transect. In both areas the benthic microalgal communities had a similar composition, dominated by pennate diatoms, dinoflagellates, and cyanobacteria. Benthic microalgal populations were potentially nutrient-limited, based on responses to nitrogen and phosphorus enrichments in short-term (7-day) microcosm experiments. Benthic microalgal productivity, measured by O-2 evolution, indicated productive communities responsive to light and nutrient availability. The benthic microalgal concentrations observed (92-995 mg chl a m(-2)) were high relative to other reports, particularly compared with temperate regions. This abundance of productive plants in both reef and shelf sediments in the southern Great Barrier Reef suggests that benthic microalgae are key components of coral reef ecosystems.
Resumo:
As the title of the thesis indicates, a detailed analysis of microalgae, the major primary producers and the first link in aquatic food chains, was carried out during this study. Microalgae are either planktonic or benthic. The studies on these microscopic autotrophs are having an upsurge of interest recently due to their variations, adaptations, short generation time and various utilitarian aspects, including food, fodder and fuel. The surface water samples collected during the cruises (cruise nos. 189, 193, 195, 196, 203, 204, 205, 207 and 209) of Fisheries and Oceanographic Research Vessel (FORV) Sagar Sampada (Fig.2.2), conducted during the period from November 2000 to November 2002, are used as samples for microalgal estimation in the EEZ of India. The present research work includes the identification and distributional pattern of planktonic microalgae in the EEZ of India. The blooms encountered during the above mentioned cruises of FORV Sagar Sampada and the blooms of Kerala coast during the period from 2001-2005 are also studied
Resumo:
We examined the spatial extent of nitrogen (N) and phosphorus (P) limitation of each of the major benthic primary producer groups in Florida Bay (seagrass, epiphytes, macroalgae, and benthic microalgae) and characterized the shifts in primary producer community composition following nutrient enrichment. We established 24 permanent 0.25-m2 study plots at each of six sites across Florida Bay and added N and P to the sediments in a factorial design for 18 mo. Tissue nutrient content of the turtlegrass Thalassia testudinum revealed a spatial pattern in P limitation, from severe limitation in the eastern bay (N:P > 96:1), moderate limitation in two intermediate sites (approximately 63:1), and balanced with N availability in the western bay (approximately 31:1). P addition increased T. testudinum cover by 50-75% and short-shoot productivity by up to 100%, but only at the severely P-limited sites. At sites with an ambient N:P ratio suggesting moderate P limitation, few seagrass responses to nutrients occurred. Where ambient T. testudinum tissue N:P ratios indicated N and P availability was balanced, seagrass was not affected by nutrient addition but was strongly influenced by disturbance (currents, erosion). Macroalgal and epiphytic and benthic microalgal biomass were variable between sites and treatments. In general, there was no algal overgrowth of the seagrass in enriched conditions, possibly due to the strength of seasonal influences on algal biomass or regulation by grazers. N addition had little effect on any benthic primary producers throughout the bay. The Florida Bay benthic primary producer community was P limited, but P-induced alterations of community structure were not uniform among primary producers or across Florida Bay and did not always agree with expected patterns of nutrient limitation based on stoichiometric predictions from field assays of T. testudinum tissue N:P ratios.
Resumo:
The spatial and temporal variation of microphytobenthic biomass in the nearshore zone of Martel Inlet (King George Island, Antarctica) was estimated at several sites and depths (10-60 m), during three summer periods (1996/1997, 1997/1998, 2004/2005). The mean values were inversely related to the bathymetric gradient: higher ones at 10-20 m depth (136.2 +/- A 112.5 mg Chl a m(-2), 261.7 +/- A 455.9 mg Phaeo m(-2)), intermediate at 20-30 m (55.6 +/- A 39.5 mg Chl a m(-2), 108.8 +/- A 73.0 mg Phaeo m(-2)) and lower ones at 40-60 m (22.7 +/- A 23.7 mg Chl a m(-2), 58.3 +/- A 38.9 mg Phaeo m(-2)). There was also a reduction in the Chl a/Phaeo ratio with depth, from 3.2 +/- A 3.2 (10-20 m) to 0.7 +/- A 1.0 (40-60 m), showing a higher contribution of senescent phytoplankton and/or macroalgae debris at the deeper sites and the limited light flux reaching the bottom. Horizontal differences found in the biomass throughout the inlet could not be clearly related to hydrodynamics or proximity to glaciers, but with sediment characteristics. An inter-summer variation was observed: the first summer presented the highest microphytobenthic biomass apparently related to more hydrodynamic conditions, which causes the deposition of allochthonous material.
Resumo:
It is well known that ocean acidification can have profound impacts on marine organisms. However, we know little about the direct and indirect effects of ocean acidification and also how these effects interact with other features of environmental change such as warming and declining consumer pressure. In this study, we tested whether the presence of consumers (invertebrate mesograzers) influenced the interactive effects of ocean acidification and warming on benthic microalgae in a seagrass community mesocosm experiment. Net effects of acidification and warming on benthic microalgal biomass and production, as assessed by analysis of variance, were relatively weak regardless of grazer presence. However, partitioning these net effects into direct and indirect effects using structural equation modeling revealed several strong relationships. In the absence of grazers, benthic microalgae were negatively and indirectly affected by sediment-associated microalgal grazers and macroalgal shading, but directly and positively affected by acidification and warming. Combining indirect and direct effects yielded no or weak net effects. In the presence of grazers, almost all direct and indirect climate effects were nonsignificant. Our analyses highlight that (i) indirect effects of climate change may be at least as strong as direct effects, (ii) grazers are crucial in mediating these effects, and (iii) effects of ocean acidification may be apparent only through indirect effects and in combination with other variables (e.g., warming). These findings highlight the importance of experimental designs and statistical analyses that allow us to separate and quantify the direct and indirect effects of multiple climate variables on natural communities.
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
In contrast to numerous studies on the biomass of marine microphytobenthos from temperate coastal ecosystems, little is known from polar regions. Therefore, microphytobenthos biomass was measured at several coastal sites in Arctic Kongsfjorden (Spitsbergen) during the polar summer (June-August 2006). On sandy sediments, chla varied between 8 and 200 mg/m**2 and was related to water depth, current/wave exposure and geographical location. Biomass was rather independent of abiotic parameters such as sediment properties, salinity, temperature or light availability. At three stations, sediments at water depths of 3-4, 10, 15, 20 and 30 m were investigated to evaluate the effect of light availability on microalgae. Significant differences in distribution patterns of biomass in relation to deeper waters >10 m were found. The productive periods were not as distinct as phytoplankton blooms. Only at 3-4 m water depth at all three stations were two- to threefold increases of biomass measured during the investigation period. Hydrodynamic conditions seemed to be the driving force for differences in sediment colonisation by benthic microalgae. In spite of the extreme Arctic environmental conditions for algal growth, microphytobenthos biomass was comparable to marine temperate waters.
Resumo:
We evaluated how changes in nutrient supply altered the composition of epiphytic and benthic microalgal communities in a Thalassia testudinum (turtle grass) bed in Florida Bay. We established study plots at four sites in the bay and added nitrogen (N) and phosphorus (P) to the sediments in a factorial design. After 18, 24, and 30 months of fertilization we measured the pigment concentrations in the epiphytic and benthic microalgal assemblages using high performance liquid chromatography. Overall, the epiphytic assemblage was P-limited in the eastern portion of the bay, but each phototrophic group displayed unique spatial and temporal responses to N and P addition. Epiphytic chlorophyll a, an indicator of total microalgal load, and epiphytic fucoxanthin, an indicator of diatoms, increased in response to P addition at one eastern bay site, decreased at another eastern bay site, and were not affected by P or N addition at two western bay sites. Epiphytic zeaxanthin, an indicator of the cyanobacteria/coralline red algae complex, and epiphytic chlorophyll b, an indicator of green algae, generally increased in response to P addition at both eastern bay sites but did not respond to P or N addition in the western bay. Benthic chlorophyll a, chlorophyll b, fucoxanthin, and zeaxanthin showed complex responses to N and P addition in the eastern bay, suggesting that the benthic assemblage is limited by both N and P. Benthic assemblages in the western bay were variable over time and displayed few responses to N or P addition. The contrasting nutrient limitation patterns between the epiphytic and benthic communities in the eastern bay suggest that altering nutrient input to the bay, as might occur during Everglades restoration, can shift microalgal community structure, which may subsequently alter food web support for upper trophic levels.
Resumo:
The construction of artificial reefs in the oligotrophic seagrass meadows of central Florida Bay attracted large aggregations of fish and invertebrates, and assays of nutrient availability indicated increases in availability of nutrients to sediment microalgae, periphyton, and seagrasses around reefs. An average of 37.8 large (> 10 cm) mobile animals were observed on each small artificial reef. The dominant fish species present was the gray snapper (Lutjanus griseus Linnaeus, 1758). Four yrs after the establishment of the artificial reefs, microphytobenthos abundance was twice as high in reef plots (1.7 ± 0.1 μg chl-a cm-2) compared to control plots (0.9 ± 0.1 μg chl-a cm-2). The accumulation of periphyton on glass periphytometers was four times higher in artificial reef plots (200.1 ± 45.8 mg chl-a m-2) compared to control plots (54.8 ± 6.8 mg chl-a m-2). The seagrass beds surrounding the artificial reefs changed rapidly, from a sparse Thalassia testudinum (Banks & Soland. ex König) dominated community, which persisted at control plots, to a community dominated by Halodule wrightii (Ascherson). Such changes mirror the changes induced in experimentally fertilized seagrass beds in Florida, strongly suggesting that the aggregations of animals attracted by artificial reefs concentrated nutrients in this oligotrophic seascape, favoring the growth of fast-growing primary producers like microphytobenthos and periphyton, and changing the competitively dominant seagrass from slow-growing T. testudinum to faster-growing H. wrightii in the vicinity of the reefs.