935 resultados para Benders decomposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a general scheme for generating extra cuts during the execution of a Benders decomposition algorithm is presented. These cuts are based on feasible and infeasible master problem solutions generated by means of a heuristic. This article includes general guidelines and a case study with a fixed charge network design problem. Computational tests with instances of this problem show the efficiency of the strategy. The most important aspect of the proposed ideas is their generality, which allows them to be used in virtually any Benders decomposition implementation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scenario-based two-stage stochastic programming model for gas production network planning under uncertainty is usually a large-scale nonconvex mixed-integer nonlinear programme (MINLP), which can be efficiently solved to global optimality with nonconvex generalized Benders decomposition (NGBD). This paper is concerned with the parallelization of NGBD to exploit multiple available computing resources. Three parallelization strategies are proposed, namely, naive scenario parallelization, adaptive scenario parallelization, and adaptive scenario and bounding parallelization. Case study of two industrial natural gas production network planning problems shows that, while the NGBD without parallelization is already faster than a state-of-the-art global optimization solver by an order of magnitude, the parallelization can improve the efficiency by several times on computers with multicore processors. The adaptive scenario and bounding parallelization achieves the best overall performance among the three proposed parallelization strategies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Solving multicommodity capacitated network design problems is a hard task that requires the use of several strategies like relaxing some constraints and strengthening the model with valid inequalities. In this paper, we compare three sets of inequalities that have been widely used in this context: Benders, metric and cutset inequalities. We show that Benders inequalities associated to extreme rays are metric inequalities. We also show how to strengthen Benders inequalities associated to non-extreme rays to obtain metric inequalities. We show that cutset inequalities are Benders inequalities, but not necessarily metric inequalities. We give a necessary and sufficient condition for a cutset inequality to be a metric inequality. Computational experiments show the effectiveness of strengthening Benders and cutset inequalities to obtain metric inequalities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the Benders decomposition technique and Branch and Bound algorithm used in the reactive power planning in electric energy systems. The Benders decomposition separates the planning problem into two subproblems: an investment subproblem (master) and the operation subproblem (slave), which are solved alternately. The operation subproblem is solved using a successive linear programming (SLP) algorithm while the investment subproblem, which is an integer linear programming (ILP) problem with discrete variables, is resolved using a Branch and Bound algorithm especially developed to resolve this type of problem.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Process systems design, operation and synthesis problems under uncertainty can readily be formulated as two-stage stochastic mixed-integer linear and nonlinear (nonconvex) programming (MILP and MINLP) problems. These problems, with a scenario based formulation, lead to large-scale MILPs/MINLPs that are well structured. The first part of the thesis proposes a new finitely convergent cross decomposition method (CD), where Benders decomposition (BD) and Dantzig-Wolfe decomposition (DWD) are combined in a unified framework to improve the solution of scenario based two-stage stochastic MILPs. This method alternates between DWD iterations and BD iterations, where DWD restricted master problems and BD primal problems yield a sequence of upper bounds, and BD relaxed master problems yield a sequence of lower bounds. A variant of CD, which includes multiple columns per iteration of DW restricted master problem and multiple cuts per iteration of BD relaxed master problem, called multicolumn-multicut CD is then developed to improve solution time. Finally, an extended cross decomposition method (ECD) for solving two-stage stochastic programs with risk constraints is proposed. In this approach, a CD approach at the first level and DWD at a second level is used to solve the original problem to optimality. ECD has a computational advantage over a bilevel decomposition strategy or solving the monolith problem using an MILP solver. The second part of the thesis develops a joint decomposition approach combining Lagrangian decomposition (LD) and generalized Benders decomposition (GBD), to efficiently solve stochastic mixed-integer nonlinear nonconvex programming problems to global optimality, without the need for explicit branch and bound search. In this approach, LD subproblems and GBD subproblems are systematically solved in a single framework. The relaxed master problem obtained from the reformulation of the original problem, is solved only when necessary. A convexification of the relaxed master problem and a domain reduction procedure are integrated into the decomposition framework to improve solution efficiency. Using case studies taken from renewable resource and fossil-fuel based application in process systems engineering, it can be seen that these novel decomposition approaches have significant benefit over classical decomposition methods and state-of-the-art MILP/MINLP global optimization solvers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Important research effort has been devoted to the topic of optimal planning of distribution systems. The non linear nature of the system, the need to consider a large number of scenarios and the increasing necessity to deal with uncertainties make optimal planning in distribution systems a difficult task. Heuristic techniques approaches have been proposed to deal with these issues, overcoming some of the inherent difficulties of classic methodologies. This paper considers several methodologies used to address planning problems of electrical power distribution networks, namely mixedinteger linear programming (MILP), ant colony algorithms (AC), genetic algorithms (GA), tabu search (TS), branch exchange (BE), simulated annealing (SA) and the Bender´s decomposition deterministic non-linear optimization technique (BD). Adequacy of theses techniques to deal with uncertainties is discussed. The behaviour of each optimization technique is compared from the point of view of the obtained solution and of the methodology performance. The paper presents results of the application of these optimization techniques to a real case of a 10-kV electrical distribution system with 201 nodes that feeds an urban area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dans ce mémoire, nous abordons le problème de l’ensemble dominant connexe de cardinalité minimale. Nous nous penchons, en particulier, sur le développement de méthodes pour sa résolution basées sur la programmation par contraintes et la programmation en nombres entiers. Nous présentons, en l’occurrence, une heuristique et quelques méthodes exactes pouvant être utilisées comme heuristiques si on limite leur temps d’exécution. Nous décrivons notamment un algorithme basé sur l’approche de décomposition de Benders, un autre combinant cette dernière avec une stratégie d’investigation itérative, une variante de celle-ci utilisant la programmation par contraintes, et enfin une méthode utilisant uniquement la programmation par contraintes. Des résultats expérimentaux montrent que ces méthodes sont efficaces puisqu’elles améliorent les méthodes connues dans la littérature. En particulier, la méthode de décomposition de Benders avec une stratégie d’investigation itérative fournit les résultats les plus performants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En la actualidad las organizaciones están en búsqueda de una mejora continua, esto lleva a que las empresas hagan una revisión de estrategias que permitan alcanzar una posición de líderes en los diferentes sectores en los que se desempeñan. Una de las estrategias para lograr un alto posicionamiento en las nuevas empresas es la adecuada gestión que hacen de la cadena de suministro. El sector agroindustrial tiene un amplia cadena de suministro desde la obtención de materias primas hasta la llegada al cliente final, por su gran magnitud requiere de una adecuada administración de procesos que permitan ser eficaces y eficientes para alcanzar logros propuestos, aprovechar los recursos limitados con los que cuentan para su cumplimiento y, por último, la capacidad propia para la transformación de sus recursos. Para lograr que las empresas obtengan ventajas competitivas, es necesario que los distintos eslabones de la cadena de suministros cuenten con una capacidad de interacción que les permita, tanto agilizar como asegurar el éxito durante la incorporación de los nuevos productos en el mercado. Por medio de esta investigación se busca esclarecer y analizar la importancia de la administración en la cadena de suministro y la relación con el desempeño, basándose en las Pymes del sector agroindustrial. La intención es evaluar la información de diversos autores quienes han hablado de la relación que existe entre la cadena de suministro y su desempeño, teniendo en cuenta variables como el sector agroindustrial y las Pymes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method for optimal transmission network expansion planning is presented. The transmission network is modelled as a transportation network. The problem is solved using hierarchical Benders decomposition in which the problem is decomposed into master and slave subproblems. The master subproblem models the investment decisions and is solved using a branch-and-bound algorithm. The slave subproblem models the network operation and is solved using a specialised linear program. Several alternative implementations of the branch-and-bound algorithm have been rested. Special characteristics of the transmission expansion problem have been taken into consideration in these implementations. The methods have been tested on various test systems available in the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many combinatorial problems coming from the real world may not have a clear and well defined structure, typically being dirtied by side constraints, or being composed of two or more sub-problems, usually not disjoint. Such problems are not suitable to be solved with pure approaches based on a single programming paradigm, because a paradigm that can effectively face a problem characteristic may behave inefficiently when facing other characteristics. In these cases, modelling the problem using different programming techniques, trying to ”take the best” from each technique, can produce solvers that largely dominate pure approaches. We demonstrate the effectiveness of hybridization and we discuss about different hybridization techniques by analyzing two classes of problems with particular structures, exploiting Constraint Programming and Integer Linear Programming solving tools and Algorithm Portfolios and Logic Based Benders Decomposition as integration and hybridization frameworks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In questa tesi, viene illustrato un metodo risolutivo al problema dell’allocazione e schedulazione, su risorse eterogenee con capacità unaria rinnovabile e cumulativa non rinnovabile, di applicazioni multitask periodiche, con periodi in relazione armonica, strutturate in attività indipendenti o sottoposte a vincoli di precedenza e con durate dipendenti dalla specifica risorsa di allocazione. L’obiettivo è quello di fornire un’implementazione del modello in grado di gestire l’allocazione e la schedulazione di istanze (i.e. insieme di applicazioni) variabili, caratterizzate da una serie di parametri. La struttura implementativa, realizzata secondo la Logic-based Benders decomposition, prevede la suddivisione del problema in due moduli. Il primo in grado di generare un’allocazione e realizzato con tecniche di programmazione lineare intera mista, il secondo con lo scopo di controllare l’ammissibilità di tale allocazione attraverso una schedulazione ottima e realizzato mediante tecniche di programmazione a vincoli. Il meccanismo di comunicazione tra i due moduli avviene mediante vincoli lineari, denominati tagli di Benders, che vengono aggiunti dopo ogni iterazione del sistema. L’efficacia del modello sarà valutata confrontando i risultati ottenuti attraverso una serie di test, con i valori forniti da un metodo di allocazione e schedulazione alternativo.