989 resultados para Bellman-Harris Branching Processes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80, 60F05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T. E. Harris was a pioneer par excellence in many fields of probability theory. In this paper, we give a brief survey of the many fundamental contributions of Harris to the theory of branching processes, starting with his doctoral work at Princeton in the late forties and culminating in his fundamental book ``The Theory of Branching Processes,'' published in 1963.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend the Harris regularity condition for ordinary Markov branching process to a more general case of non-linear Markov branching process. A regularity criterion which is very easy to check is obtained. In particular, we prove that a super-linear Markov branching process is regular if and only if the per capita offspring mean is less than or equal to I while a sub-linear Markov branching process is regular if the per capita offspring mean is finite. The Harris regularity condition then becomes a special case of our criterion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Марусия Н. Славчова-Божкова - В настоящата работа се обобщава една гранична теорема за докритичен многомерен разклоняващ се процес, зависещ от възрастта на частиците с два типа имиграция. Целта е да се обобщи аналогичен резултат в едномерния случай като се прилагат “coupling” метода, теория на възстановяването и регенериращи процеси.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2010 Mathematics Subject Classification: Primary 60J80; Secondary 92D30.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60J80.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Attention has recently focussed on stochastic population processes that can undergo total annihilation followed by immigration into state j at rate αj. The investigation of such models, called Markov branching processes with instantaneous immigration (MBPII), involves the study of existence and recurrence properties. However, results developed to date are generally opaque, and so the primary motivation of this paper is to construct conditions that are far easier to apply in practice. These turn out to be identical to the conditions for positive recurrence, which are very easy to check. We obtain, as a consequence, the surprising result that any MBPII that exists is ergodic, and so must possess an equilibrium distribution. These results are then extended to more general MBPII, and we show how to construct the associated equilibrium distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A generalized Markov Brnching Process (GMBP) is a Markov branching model where the infinitesimal branching rates are modified with an interaction index. It is proved that there always exists only one GMBP. An associated differential-integral equation is derived. The extinction probalility and the mean and conditional mean extinction times are obtained. Ergodicity and stability of GMBP with resurrection are also considered. Easy checking criteria are established for ordinary and strong ergodicty. The equilibrium distribution is given in an elegant closed form. The probability meaning of our results is clear and thus explained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper focuses on the basic problems regarding uniqueness and extinction properties for generalised Markov branching processes. The uniqueness criterion is firstly established and a differential–integral equation satisfied by the transition functions of such processes is derived. The extinction probability is then obtained. A closed form is presented for both the mean extinction time and the conditional mean extinction time. It turns out that these important quantities are closely related to the elementary gamma function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper concentrates on investigating ergodicity and stability for generalised Markov branching processes with resurrection. Easy checking criteria including several clear-cut corollaries are established for ordinary and strong ergodicity of such processes. The equilibrium distribution is given in an elegant closed form for the ergodic case. The probabilistic interpretation of the results is clear and thus explained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This note provides a new probabilistic approach in discussing the weighted Markov branching process (WMBP) which is a natural generalisation of the ordinary Markov branching process. Using this approach, some important characteristics regarding the hitting times of such processes can be easily obtained. In particular, the closed forms for the mean extinction time and conditional mean extinction time are presented. The explosion behaviour of the process is investigated and the mean explosion time is derived. The mean global holding time and the mean total survival time are also obtained. The close link between these newly developed processes and the well-known compound Poisson processes is investigated. It is revealed that any weighted Markov branching process (WMBP) is a random time change of a compound Poisson process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiotherapy has been a method of choice in cancer treatment for a number of years. Mathematical modeling is an important tool in studying the survival behavior of any cell as well as its radiosensitivity. One particular cell under investigation is the normal T-cell, the radiosensitivity of which may be indicative to the patient's tolerance to radiation doses.^ The model derived is a compound branching process with a random initial population of T-cells that is assumed to have compound distribution. T-cells in any generation are assumed to double or die at random lengths of time. This population is assumed to undergo a random number of generations within a period of time. The model is then used to obtain an estimate for the survival probability of T-cells for the data under investigation. This estimate is derived iteratively by applying the likelihood principle. Further assessment of the validity of the model is performed by simulating a number of subjects under this model.^ This study shows that there is a great deal of variation in T-cells survival from one individual to another. These variations can be observed under normal conditions as well as under radiotherapy. The findings are in agreement with a recent study and show that genetic diversity plays a role in determining the survival of T-cells. ^