6 resultados para Bellator
Resumo:
Species identifications of Prionotus and Bellator are often difficult under field conditions owing to the large number of species and their overlapping taxonomic characteristics. This key is intended to provide a simplified, accurate means to identify adult searobins greater than 10 cm standard length. All recognized species from the western North Atlantic, the Gulf of Mexico, and Caribbean Sea are included. (PDF file contains 30 pages.)
Resumo:
Background: Anopheles (Kerteszia) cruzii is a primary vector of Plasmodium parasites in Brazil's Atlantic Forest. Adult females of An. cruzii and An. homunculus, which is a secondary malaria vector, are morphologically similar and difficult to distinguish when using external morphological characteristics only. These two species may occur syntopically with An. bellator, which is also a potential vector of Plasmodium species and is morphologically similar to An. cruzii and An. homunculus. Identification of these species based on female specimens is often jeopardised by polymorphisms, overlapping morphological characteristics and damage caused to specimens during collection. Wing geometric morphometrics has been used to distinguish several insect species; however, this economical and powerful tool has not been applied to Kerteszia species. Our objective was to assess wing geometry to distinguish An. cruzii, An. homunculus and An. bellator. Methods: Specimens were collected in an area in the Serra do Mar hotspot biodiversity corridor of the Atlantic Forest biome (Cananeia municipality, State of Sao Paulo, Brazil). The right wings of females of An. cruzii (n= 40), An. homunculus (n= 50) and An. bellator (n= 27) were photographed. For each individual, 18 wing landmarks were subjected to standard geometric morphometrics. Discriminant analysis of Procrustean coordinates was performed to quantify wing shape variation. Results: Individuals clustered into three distinct groups according to species with a slight overlap between representatives of An. cruzii and An. homunculus. The Mahalanobis distance between An. cruzii and An. homunculus was consistently lower (3.50) than that between An. cruzii and An. bellator (4.58) or An. homunculus and An. bellator (4.32). Pairwise cross-validated reclassification showed that geometric morphometrics is an effective analytical method to distinguish between An. bellator, An. cruzii and An. homunculus with a reliability rate varying between 78-88%. Shape analysis revealed that the wings of An. homunculus are narrower than those of An. cruzii and that An. bellator is different from both of the congeneric species. Conclusion: It is possible to distinguish among the vectors An. cruzii, An. homunculus and An. bellator based on female wing characteristics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some cytogenetical aspects of spermatozoa formation were studied in 9 Coreidae Brazilian species: Anasa bellator, Athaumastus haematicus, Chariesterus armatus, Dallacoris obscura, Dallacoris pictus, Leptoglossus gonagra, Leptoglossus zonatus, Sphictyrtus fasciatus, and Zicca annulata. Similarly to the other species described to date, all the species studied herein showed cystic spermatogenesis, a reddish membrane covering the testes, a X0 sex determining system, a pair of m-chromosomes, intersticial chiasmata in most autosomes, and autosomes dividing reductionally at first meiotic division and equationally in the second 1 while sex chromosomes, divide equationally and reductionally at first and second meiotic division, respectively. In addition, it was observed that the sex chromosome is heteropycnotic at prophase and that heteropycnotic chromosomal material is found in the nuclei at spermiogenesis. In the species studied, the diploid chromosome number ranged from 19 to 25. It was 19 in S. fasciatus (16A+2m+X0); 21 in A. bellator, A. haematicus, D. obscura, D. pictus, L. gonagra, and L. zonatus (18A+2m+X0); 23 in Z. annulata (20A+2m+X0); and 25 in C. armatus (22A+2m+X0). © 2007 The Japan Mendel Society.
Resumo:
Abstract Background The Atlantic rainforest ecosystem, where bromeliads are abundant, provides an excellent environment for Kerteszia species, because these anophelines use the axils of those plants as larval habitat. Anopheles (K.) cruzii and Anopheles (K.) bellator are considered the primary vectors of malaria in the Atlantic forest. Although the incidence of malaria has declined in some areas of the Atlantic forest, autochthonous cases are still registered every year, with Anopheles cruzii being considered to be a primary vector of both human and simian Plasmodium. Methods Recent publications that addressed ecological aspects that are important for understanding the involvement of Kerteszia species in the epidemiology of malaria in the Atlantic rainforest in the Neotropical Region were analysed. Conclusion The current state of knowledge about Kerteszia species in relation to the Atlantic rainforest ecosystem was discussed. Emphasis was placed on ecological characteristics related to epidemiological aspects of this group of mosquitoes. The main objective was to investigate biological aspects of the species that should be given priority in future studies.
Resumo:
Abstract Background A descriptive study was carried out in an area of the Atlantic Forest with autochthonous malaria in the Parelheiros subdistrict on the periphery of the municipality of São Paulo to identify anopheline fauna and anophelines naturally infected with Plasmodium as well as to discuss their role in this peculiar epidemiological context. Methods Entomological captures were made from May 2009 to April 2011 using Shannon traps and automatic CDC traps in four areas chosen for their different patterns of human presence and incidences of malaria (anthropic zone 1, anthropic zone 2, transition zone and sylvatic zone). Natural Plasmodium infection was detected by nested PCR based on amplification of the 18S rRNA gene. Results In total, 6,073 anophelines were collected from May 2009 to April 2011, and six species were identified in the four zones. Anopheles cruzii was the predominant species in the three environments but was more abundant in the sylvatic zone. Anopheles (Kerteszia) cruzii specimens from the anthropic and sylvatic zones were positive for P. vivax and P. malariae. An. (Ker.) bellator, An. (Nys.) triannulatus, An. (Nys.) strodei, An. (Nys.) lutzi and An. (Ano) maculipes were found in small numbers. Of these, An. (Nys.) triannulatus and An. (Nys.) lutzi, which were collected in the anthropic zone, were naturally infected with P. vivax while An. (Nys.) triannulatus from the anthropic zones and An. (Nys.) strodei from the transition zone were positive for P. malariae. Conclusion These results confirm that Anopheles (Kerteszia) cruzii plays an important role as a major Plasmodium vector. However, the finding of other naturally infected species may indicate that secondary vectors are also involved in the transmission of malaria in the study areas. These findings can be expected to help in the implementation of new measures to control autochthonous malaria in areas of the Atlantic Forest.