983 resultados para Bell pepper
Resumo:
The objective of this study was to monitor 11 organophosphorus pesticides in samples of papaya, bell pepper, and banana, commercialized in the metropolitan area of Vitória (ES, Brazil). The pesticides were determined by an optimized and validated method using high performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). All three samples exhibited a matrix effect for most of the pesticides, mainly with signal suppression, and therefore the calibration curves were produced in matrices. Linearity revealed coefficients of determination (r2) greater than 0.9895 for all pesticides and recovery results ranged from between 76% and 118% with standard deviation no greater than 16%. Precision showed relative standard deviation values lower than 19% and HorRat values lower than 0.7, considering all pesticides. Limits of quantification were less than 0.01 mg/kg for all pesticides. Regarding analysis of the samples (50 of each), none of the pesticides exceeded the maximum residue limit determined by Brazilian legislation.
Resumo:
The objective in this study was to verify the efficiency of different procedures for evaluating the physiological potential of bell pepper seed and identify its relationship with germination at different temperatures and with seedling emergence. Five seed lots each of the Reinger and Sentinel hybrids were used. Seed physiological potential was evaluated by germination, saturated salt accelerated aging (48 h/41 °C), seedling emergence (percentage and speed), and tetrazolium tests (preconditioning at 45 °C/3 h and seed staining at 45 °C/2 h). Germination (percentage and speed) on a thermogradient table at 15 °C, 18 °C, 21 °C, 25 °C and 30 °C was also evaluated the saturated salt accelerated aging and tetrazolium tests are suitable for access the physiological potential of bell pepper seeds. It was also confirmed that vigorous seed lots perform better when exposed to different temperatures during germination.
Resumo:
Tetradifon, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to green bell pepper crops. In this context, in this work, a reliable and sensitive method for determination of tetradifon in Brazilian green bell pepper samples involving a differential pulse voltammetry (DPV) technique on a glassy carbon electrode is proposed. The electrochemical behavior of tetradifon as followed by cyclic voltammetry (CV) suggests that its reduction occurs via an irreversible five–electron transfer vs. Ag|AgCl, KCl 3 M reference electrode. Very well–resolved diffusion controlled voltammetric peaks have been obtained in a supporting electrolyte solution composed of a mixture of 40% dimethylformamide (DMF), 30% methanol, and 30% NaOH 0.3 mol L−1 at −1.43, −1.57, −1.73, −1.88, and −2.05 V. The proposed DPV method has a good linear response in the 3.00 – 10.0 μmol L−1 range, with a limit of detection (L.O.D) of 0.756 μmol L−1 and 0.831 μmol L−1 in the absence and in the presence of the matrix, respectively. Moreover, improved L.O.D results (0.607 μmol L−1) have been achieved in the absence of DMF from the supporting electrolyte solution. Recovery has been evaluated in five commercial green bell pepper samples, and recovery percentages ranging from 91.0 to 109 have been obtained for tetradifon determinations. The proposed voltammetric method has also been tested for reproducibility, repeatability, and potential interferents, and the results obtained for these three analytical parameters are satisfactory for electroanalytical purposes.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The greenhouse production associated with the fertigation management, have established in Brazil as economical alternative for several horticultural species. With this strategy this study had as aim to evaluate possible impacts in the metabolism of plants of bell pepper (Capsicum annuum L.; cv Elisa) in response to the increase of mineral concentration in the soil. During the experiments, the some nutrient concentrations were altered, to obtain high values of electric conductivity (EC) in the soil solution. The EC values commonly observed in the traditional fertigation system were adopted, as control. It was also verified the possibility of reduction of the mineral stress impact by the application of organic matter in the soil. Parameters of the antioxidative response system, as the superoxide dismutase (SOD) and catalase enzyme activities besides the proline content were evaluated to measure the extension of the saline stress and their effects on the plants. The increase of EC of the soil induced to the increase of the proline concentration and the SOD activity. Unexpectedly, it was verified that the saline stress inhibited the activity of the enzyme catalase. It was also concluded that the monitoring of EC of the soil is an indispensable tool to reach success in the fertigation system and that the study of the activity of the enzymes of the antioxidative response system, and the proline contents can be assumed as indicators in of the levels of stress in bell pepper plants (Capsicum annuum L.; cv Elisa).
Resumo:
Tetradifon, a potentially carcinogenic and mutagenic pesticide, can contribute to environmental and human contamination when applied to green bell pepper crops. In this context, in this work, a reliable and sensitive method for determination of tetradifon in Brazilian green bell pepper samples involving a differential pulse voltammetry (DPV) technique on a glassy carbon electrode is proposed. The electrochemical behavior of tetradifon as followed by cyclic voltammetry (CV) suggests that its reduction occurs via an irreversible five-electron transfer vs. Ag vertical bar AgCl, KCl 3 M reference electrode. Very well-resolved diffusion controlled voltammetric peaks have been obtained in a supporting electrolyte solution composed of a mixture of 40% dimethylformamide (DMF), 30% methanol, and 30% NaOH 0.3 mol L-1 at -1.43, -1.57, -1.73, -1.88, and -2.05 V. The proposed DPV method has a good linear response in the 3.00 - 10.0 mu mol L-1 range, with a limit of detection (L.O.D) of 0.756 mu mol L-1 and 0.831 mu mol L-1 in the absence and in the presence of the matrix, respectively. Moreover, improved L.O.D results (0.607 mu mol L-1) have been achieved in the absence of DMF from the supporting electrolyte solution. Recovery has been evaluated in five commercial green bell pepper samples, and recovery percentages ranging from 91.0 to 109 have been obtained for tetradifon determinations. The proposed voltammetric method has also been tested for reproducibility, repeatability, and potential interferents, and the results obtained for these three analytical parameters are satisfactory for electroanalytical purposes. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.024207jes] All rights reserved.
Resumo:
Chloroplast to chromoplast development involves new synthesis and plastid localization of nuclear-encoded proteins, as well as changes in the organization of internal plastid membrane compartments. We have demonstrated that isolated red bell pepper (Capsicum annuum) chromoplasts contain the 75-kD component of the chloroplast outer envelope translocon (Toc75) and are capable of importing chloroplast precursors in an ATP-dependent fashion, indicating a functional general import apparatus. The isolated chromoplasts were able to further localize the 33- and 17-kD subunits of the photosystem II O2-evolution complex (OE33 and OE17, respectively), lumen-targeted precursors that utilize the thylakoidal Sec and ΔpH pathways, respectively, to the lumen of an internal membrane compartment. Chromoplasts contained the thylakoid Sec component protein, cpSecA, at levels comparable to chloroplasts. Routing of OE17 to the lumen was abolished by ionophores, suggesting that routing is dependent on a transmembrane ΔpH. The chloroplast signal recognition particle pathway precursor major photosystem II light-harvesting chlorophyll a/b protein failed to associate with chromoplast membranes and instead accumulated in the stroma following import. The Pftf (plastid fusion/translocation factor), a chromoplast protein, integrated into the internal membranes of chromoplasts during in vitro assays, and immunoblot analysis indicated that endogenous plastid fusion/translocation factor was also an integral membrane protein of chromoplasts. These data demonstrate that the internal membranes of chromoplasts are functional with respect to protein translocation on the thylakoid Sec and ΔpH pathways.
Resumo:
ABSTRACT Investigations into water potentials in the soil-plant system are of great relevance in environments with abiotic stresses, such as salinity and drought. An experiment was developed using bell pepper in a Neossolo Flúvico (Fluvent) irrigated with water of six levels of electrical conductivity (0, 1, 3, 5, 7 and 9 dS m-1) by using exclusively NaCl and by simulating the actual condition (using a mixture of salts). The treatments were arranged in a randomized block design, in a 6 × 2 factorial arrangement, with four replicates. Soil matric (Ψm) and osmotic (Ψo) potentials were determined 70 days after transplanting (DAT). Soil total potential was considered as the sum of Ψm and Ψo. Leaf water (obtained with the Scholander Chamber) and osmotic potentials were determined before sunrise (predawn) and at noon at 42 and 70 DAT. There were no significant differences between the salt sources used in the irrigation water for soil and plant water potentials. The supply of salts to the soil through irrigation water was the main factor responsible for the decrease in Ψo in the soil and in bell pepper leaves. The total potential of bell pepper at predawn reached values of -1.30 and -1.33 MPa at 42 and 70 DAT, respectively, when water of 9 dS m-1 was used in the irrigation. The total potential at noon reached -2.19 MPa. The soil subjected to the most saline treatment reached a water potential of -1.20 MPa at 70 DAT. There was no predawn equilibrium between the total water potentials of the soil and the plant, indicating that soil potential cannot be considered similar to that of the plant. The determination of the osmotic potential in the soil solution should not be neglected in saline soils, since it has strong influence on the calculation of the total potential.
Resumo:
The Impact of the Multicolor Asian Lady Beetle (Harmonia axyridis) on Niagara Wine Quality The possible influence of Harmonia axyridis (the Multicolored Asian Lady Beetle) on the sensory properties of wine was investigated. H. axyridis beetles were added to white and red grape musts at a rate of 0, 1 or 10 per L, and a trained panel evaluated the finished wines using flavor-profiling techniques. Significant modification of both wine aroma and flavor characteristics were observed in the 10 beetlelL treatments, with smaller effects noted at the 1 beetlelL rate. Vinification in the presence of H. axyridis gave higher intensity scores for peanut, bell pepper and asparagus aromas and flavors in the white wines, and peanut, asparagus/bell pepper, and earthy/herbaceous aromas and flavors in the red wines. In addition, sweet, acid and bitter tastes were affected in red wines, and a general trend of decreasing fruit and floral intensities with increasing beetle rate was observed in both white and red wines. 15 ngIL Isopropylmethoxypyrazine was added to control wines and sensory profiles similar to high beetle treatments were obtained, supporting the hypothesis that methoxypyrazines from beetles are implicated in the taint. A trained panel evaluated the treated wines after 10 months of aging using the same sensory methods described above. Sensory profiles were very similar. Fennenting in the presence of Harmonia Axyridis (HA) had little influence on the chemical composition of the ftnished wine. The notable exception IS Isopropylmethoxypyrazine content, which was assessed usmg GC-MS analysis and showed increased concentration with increasing beetle nwnber for both white and red wmes. The influence of potential remedial treatments on the sensory properties of white and red wines tainted by Harmonia axyridis were also investigated. Bentonite, activated charcoal, oak chips, de-odorized oak chips, and UV or light irradiation were applied to tainted wine, and these wines evaluated chemically and sensorially. Both white and red wines treated with oak chips had strong oak characteristics, which masked the Harmonia axyridis-associated aroma and flavour attributes. In red wine, asparagus/bell pepper characteristics were decreased by bentonite and charcoal treatments. Only activated charcoal significantly decreased methoxypyrazine levels and only in white wine.
Resumo:
. The influence of vine water status was studied in commercial vineyard blocks of Vilis vinifera L. cv. Cabernet Franc in Niagara Peninsula, Ontario from 2005 to 2007. Vine performance, fruit composition and vine size of non-irrigated grapevines were compared within ten vineyard blocks containing different soil and vine water status. Results showed that within each vineyard block water status zones could be identified on GIS-generated maps using leaf water potential and soil moisture measurements. Some yield and fruit composition variables correlated with the intensity of vine water status. Chemical and descriptive sensory analysis was performed on nine (2005) and eight (2006) pairs of experimental wines to illustrate differences between wines made from high and low water status winegrapes at each vineyard block. Twelve trained judges evaluated six aroma and flavor (red fruit, black cherry, black current, black pepper, bell pepper, and green bean), thr~e mouthfeel (astringency, bitterness and acidity) sensory attributes as well as color intensity. Each pair of high and low water status wine was compared using t-test. In 2005, low water status (L WS) wines from Buis, Harbour Estate, Henry of Pelham (HOP), and Vieni had higher color intensity; those form Chateau des Charmes (CDC) had high black cherry flavor; those at RiefEstates were high in red fruit flavor and at those from George site was high in red fruit aroma. In 2006, low water status (L WS) wines from George, Cave Spring and Morrison sites were high in color intensity. L WS wines from CDC, George and Morrison were more intense in black cherry aroma; LWS wines from Hernder site were high in red fruit aroma and flavor. No significant differences were found from one year to the next between the wines produced from the same vineyard, indicating that the attributes of these wines were maintained almost constant despite markedly different conditions in 2005 and 2006 vintages. Partial ii Least Square (PLS) analysis showed that leaf \}' was associated with red fruit aroma and flavor, berry and wine color intensity, total phenols, Brix and anthocyanins while soil moisture was explained with acidity, green bean aroma and flavor as well as bell pepper aroma and flavor. In another study chemical and descriptive sensory analysis was conducted on nine (2005) and eight (2006) medium water status (MWS) experimental wines to illustrate differences that might support the sub-appellation system in Niagara. The judges evaluated the same aroma, flavor, and mouthfeel sensory attributes as well as color intensity. Data were analyzed using analysis of variance (ANOVA), principal component analysis (PCA) and discriminate analysis (DA). ANOV A of sensory data showed regional differences for all sensory attributes. In 2005, wines from CDC, HOP, and Hemder sites showed highest. r ed fruit aroma and flavor. Lakeshore and Niagara River sites (Harbour, Reif, George, and Buis) wines showed higher bell pepper and green bean aroma and flavor due to proximity to the large bodies of water and less heat unit accumulation. In 2006, all sensory attributes except black pepper aroma were different. PCA revealed that wines from HOP and CDC sites were higher in red fruit, black currant and black cherry aroma and flavor as well as black pepper flavor, while wines from Hemder, Morrison and George sites were high in green bean aroma and flavor. ANOV A of chemical data in 2005 indicated that hue, color intensity, and titratable acidity (TA) were different across the sites, while in 2006, hue, color intensity and ethanol were different across the sites. These data indicate that there is the likelihood of substantial chemical and sensory differences between clusters of sub-appellations within the Niagara Peninsula iii
Resumo:
Spodoptera cosmioides (Lepidoptera: Noctuidae)é uma espécie polífaga e alimenta-se de grande número de plantas cultivadas e espontâneas. No Brasil, as culturas do abacaxi, algodoeiro, arroz, berinjela, cebola, eucalipto, pimentão e tomateiro, entre outras hortaliças, são consideradas hospedeiras da praga. Entretanto, apesar da ampla gama de hospedeiros, sua ocorrência como praga é relatada relacionada a desequilíbrios provocados pelo uso excessivo de inseticidas de amplo espectro, o que vem causando a resistência da praga a inseticidas. Devido a essa complexidade, métodos alternativos de controle têm sido propostos, por exemplo, o controle biológico através da utilização de parasitóides. Trichospilus diatraeae (Hymenptera: Eulophidae) é um parasitóide gregário pupal preferencialmente de espécies da ordem Lepidoptera. Este é o primeiro relato de T. diatraeae parasitando pupas de S. cosmioides, parasitóide que oferece novas perspectivas para os programas de controle biológico.
Resumo:
O adequado manejo da adubação nitrogenada ao longo do ciclo da cultura do pimentão é complicado pela falta de um índice do N disponível no solo e por ser a análise química de folhas um método de diagnose demorado. Foi realizado um experimento em vasos, em um túnel de plástico pertencente ao Departamento de Recursos Naturais/Ciência do Solo, da FCA/UNESP, Botucatu (SP), com o objetivo de avaliar o índice de suficiência de nitrogênio (ISN), calculado com base nas medidas do clorofilômetro, como ferramenta auxiliar no manejo da adubação nitrogenada em plantas de pimentão. O experimento foi composto de doses de N (4,9; 9,8; 14,7; 19,6; e 24,5 g de N 50 kg-1 de solo - uma planta) aplicadas de modo convencional ou pela fertirrigação e um tratamento em que as plantas não receberam apenas a adubação nitrogenada, com sete repetições. As medidas do clorofilômetro foram realizadas a cada 15 dias em cinco folhas recém-maduras por planta. O ISN foi calculado pela relação entre a média das medidas do clorofilômetro nas plantas dos tratamentos (MCT) e a média das medidas do clorofilômetro nas plantas que receberam a maior dose (MCR), na área de referência (ISN = MCT/MCR x 100). O ISN pode ser um bom indicador do momento de aplicação do adubo nitrogenado e auxiliar no ajuste da dose de N de acordo com a exigência das plantas de pimentão, com a finalidade de aumentar a eficiência de utilização do N aplicado.
Resumo:
O uso das técnicas de fertirrigação em ambiente protegido vem aumentando no Brasil devido à praticidade de condução e redução dos custos de produção. Apesar dessas vantagens, salienta-se que esta prática também pode trazer riscos, principalmente pelo acúmulo de sais na superfície do solo e na região periférica do bulbo radicular. em caso de salinização do solo pelo manejo incorreto do sistema podem ocorrer alterações na disponibilidade de nutrientes, com conseqüências fisiológicas no desenvolvimento das plantas. Neste trabalho, utilizou-se o pimentão (Capsicum annuum L.) como planta-modelo para estudos da interferência da salinidade na nutrição das plantas, pela alteração da condutividade elétrica (CE) na solução do solo. Os resultados revelaram indícios de antagonismo entre nutrientes, notadamente entre as formas catiônicas em razão do aumento da concentração de KCl nos tratamentos com alta CE. A suplementação do solo com adubo orgânico não atenuou os efeitos do aumento da concentração salina e os valores extremos de CE interferiram drasticamente na produção.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)