979 resultados para Bell Theorem
Resumo:
This paper offers a defense of backwards in time causation models in quantum mechanics. Particular attention is given to Cramer's transactional account, which is shown to have the threefold virtue of solving the Bell problem, explaining the complex conjugate aspect of the quantum mechanical formalism, and explaining various quantum mysteries such as Schrodinger's cat. The question is therefore asked, why has this model not received more attention from physicists and philosophers? One objection given by physicists in assessing Cramer's theory was that it is not testable. This paper seeks to answer this concern by utilizing an argument that backwards causation models entail a fork theory of causal direction. From the backwards causation model together with the fork theory one can deduce empirical predictions. Finally, the objection that this strategy is questionable because of its appeal to philosophy is deflected.
Resumo:
Following on from previous work [J.-A. Larsson, Phys. Rev. A 67, 022108 (2003)], Bell inequalities based on correlations between binary digits are considered for a particular entangled state involving 2N trapped ions. These inequalities involve applying displacement operations to half of the ions and then measuring correlations between pairs of corresponding bits in the binary representations of the number of center-of-mass phonons of N particular ions. It is shown that the state violates the inequalities and thus displays nonclassical correlations. It is also demonstrated that it violates a Bell inequality when the displacements are replaced by squeezing operations.
Resumo:
Bell's palsy is a neuropathy of the peripheral seventh cranial nerve, resulting from traumatic, compressive, infective, inflammatory or metabolic abnormalities or it can be idiopathic. HIV, Epstein-Barr virus and hepatitis B virus have been suspected as initiating organisms, but herpes simplex virus is the most frequently implicated. This report describes 2 cases of Bell's palsy in children that were managed with antiviral agents. Both patients experienced complete recovery within 28 days; after 1 year follow-up, no recurrence was observed and both patients have normal facial movement. Differential diagnosis is essential to guide the treatment plan in Bell's palsy. Special attention should be given to children with respect to prescription of medications that can cause important side effects.
Resumo:
In this paper we investigate the dynamic properties of the minimal Bell-Lavis (BL) water model and their relation to the thermodynamic anomalies. The BL model is defined on a triangular lattice in which water molecules are represented by particles with three symmetric bonding arms interacting through van der Waals and hydrogen bonds. We have studied the model diffusivity in different regions of the phase diagram through Monte Carlo simulations. Our results show that the model displays a region of anomalous diffusion which lies inside the region of anomalous density, englobed by the line of temperatures of maximum density. Further, we have found that the diffusivity undergoes a dynamic transition which may be classified as fragile-to-strong transition at the critical line only at low pressures. At higher densities, no dynamic transition is seen on crossing the critical line. Thus evidence from this study is that relation of dynamic transitions to criticality may be discarded. (C) 2010 American Institute of Physics. [doi:10.1063/1.3479001]
Resumo:
The Bell-Lavis model for liquid water is investigated through numerical simulations. The lattice-gas model on a triangular lattice presents orientational states and is known to present a highly bonded low density phase and a loosely bonded high density phase. We show that the model liquid-liquid transition is continuous, in contradiction with mean-field results on the Husimi cactus and from the cluster variational method. We define an order parameter which allows interpretation of the transition as an order-disorder transition of the bond network. Our results indicate that the order-disorder transition is in the Ising universality class. Previous proposal of an Ehrenfest second order transition is discarded. A detailed investigation of anomalous properties has also been undertaken. The line of density maxima in the HDL phase is stabilized by fluctuations, absent in the mean-field solution. (C) 2009 American Institute of Physics. [doi:10.1063/1.3253297]
Resumo:
We have reconsidered the Bell-Lavis model of liquid water and investigated its relation to its isotropic version, the antiferromagnetic Blume-Emery-Griffiths model on the triangular lattice. Our study was carried out by means of an exact solution on the sequential Husimi cactus. We show that the ground states of both models share the same topology and that fluid phases (gas and low- and high-density liquids) can be mapped onto magnetic phases (paramagnetic, antiferromagnetic, and dense paramagnetic, respectively). Both models present liquid-liquid coexistence and several thermodynamic anomalies. This result suggests that anisotropy introduced through orientational variables play no specific role in producing the density anomaly, in agreement with a similar conclusion discussed previously following results for continuous soft core,models. We propose that the presence of liquid anomalies may be related to energetic frustration, a feature common to both models.
Resumo:
We prove a Goldstone theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of spacelike decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3526961]
Resumo:
In this paper, employing the Ito stochastic Schrodinger equation, we extend Bell's beable interpretation of quantum mechanics to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. For a particular choice of the source of stochasticity, the one leading to a dissipative Lindblad-type correction to the Hamiltonian dynamics, we find that the diffusive terms in Nelsons stochastic trajectories are naturally incorporated into Bohm's causal dynamics, yielding a unified Bohm-Nelson theory. In particular, by analyzing the interference between quantum trajectories, we clearly identify the decoherence time, as estimated from the quantum formalism. We also observe the quantum-to-classical transition in the convergence of the infinite ensemble of quantum trajectories to their classical counterparts. Finally, we show that our extended beables circumvent the problems in Bohm's causal dynamics regarding stationary states in quantum mechanics.
Resumo:
In this paper, we present an analog of Bell's inequalities violation test for N qubits to be performed in a nuclear magnetic resonance (NMR) quantum computer. This can be used to simulate or predict the results for different Bell's inequality tests, with distinct configurations and a larger number of qubits. To demonstrate our scheme, we implemented a simulation of the violation of the Clauser, Horne, Shimony and Holt (CHSH) inequality using a two-qubit NMR system and compared the results to those of a photon experiment. The experimental results are well described by the quantum mechanics theory and a local realistic hidden variables model (LRHVM) that was specifically developed for NMR. That is why we refer to this experiment as a simulation of Bell's inequality violation. Our result shows explicitly how the two theories can be compatible with each other due to the detection loophole. In the last part of this work, we discuss the possibility of testing some fundamental features of quantum mechanics using NMR with highly polarized spins, where a strong discrepancy between quantum mechanics and hidden variables models can be expected.
Resumo:
An (n, d)-expander is a graph G = (V, E) such that for every X subset of V with vertical bar X vertical bar <= 2n - 2 we have vertical bar Gamma(G)(X) vertical bar >= (d + 1) vertical bar X vertical bar. A tree T is small if it has at most n vertices and has maximum degree at most d. Friedman and Pippenger (1987) proved that any ( n; d)- expander contains every small tree. However, their elegant proof does not seem to yield an efficient algorithm for obtaining the tree. In this paper, we give an alternative result that does admit a polynomial time algorithm for finding the immersion of any small tree in subgraphs G of (N, D, lambda)-graphs Lambda, as long as G contains a positive fraction of the edges of Lambda and lambda/D is small enough. In several applications of the Friedman-Pippenger theorem, including the ones in the original paper of those authors, the (n, d)-expander G is a subgraph of an (N, D, lambda)-graph as above. Therefore, our result suffices to provide efficient algorithms for such previously non-constructive applications. As an example, we discuss a recent result of Alon, Krivelevich, and Sudakov (2007) concerning embedding nearly spanning bounded degree trees, the proof of which makes use of the Friedman-Pippenger theorem. We shall also show a construction inspired on Wigderson-Zuckerman expander graphs for which any sufficiently dense subgraph contains all trees of sizes and maximum degrees achieving essentially optimal parameters. Our algorithmic approach is based on a reduction of the tree embedding problem to a certain on-line matching problem for bipartite graphs, solved by Aggarwal et al. (1996).
Resumo:
Let P be a linear partial differential operator with analytic coefficients. We assume that P is of the form ""sum of squares"", satisfying Hormander's bracket condition. Let q be a characteristic point; for P. We assume that q lies on a symplectic Poisson stratum of codimension two. General results of Okaji Show that P is analytic hypoelliptic at q. Hence Okaji has established the validity of Treves' conjecture in the codimension two case. Our goal here is to give a simple, self-contained proof of this fact.
Resumo:
In 1983, Jager and Kaul proved that the equator map u*(x) = (x/\x\,0) : B-n --> S-n is unstable for 3 less than or equal to n less than or equal to 6 and a minimizer for the energy functional E(u, B-n) = integral B-n \del u\(2) dx in the class H-1,H-2(B-n, S-n) with u = u* on partial derivative B-n when n greater than or equal to 7. In this paper, we give a new and elementary proof of this Jager-Kaul result. We also generalize the Jager-Kaul result to the case of p-harmonic maps.