924 resultados para Belief Propagation
Resumo:
Local belief propagation rules of the sort proposed by Pearl(1988) are guaranteed to converge to the optimal beliefs for singly connected networks. Recently, a number of researchers have empirically demonstrated good performance of these same algorithms on networks with loops, but a theoretical understanding of this performance has yet to be achieved. Here we lay the foundation for an understanding of belief propagation in networks with loops. For networks with a single loop, we derive ananalytical relationship between the steady state beliefs in the loopy network and the true posterior probability. Using this relationship we show a category of networks for which the MAP estimate obtained by belief update and by belief revision can be proven to be optimal (although the beliefs will be incorrect). We show how nodes can use local information in the messages they receive in order to correct the steady state beliefs. Furthermore we prove that for all networks with a single loop, the MAP estimate obtained by belief revisionat convergence is guaranteed to give the globally optimal sequence of states. The result is independent of the length of the cycle and the size of the statespace. For networks with multiple loops, we introduce the concept of a "balanced network" and show simulati.
Resumo:
Typically, algorithms for generating stereo disparity maps have been developed to minimise the energy equation of a single image. This paper proposes a method for implementing cross validation in a belief propagation optimisation. When tested using the Middlebury online stereo evaluation, the cross validation improves upon the results of standard belief propagation. Furthermore, it has been shown that regions of homogeneous colour within the images can be used for enforcing the so-called "Segment Constraint". Developing from this, Segment Support is introduced to boost belief between pixels of the same image region and improve propagation into textureless regions.
Resumo:
Nonparametric belief propagation (NBP) is a well-known particle-based method for distributed inference in wireless networks. NBP has a large number of applications, including cooperative localization. However, in loopy networks NBP suffers from similar problems as standard BP, such as over-confident beliefs and possible nonconvergence. Tree-reweighted NBP (TRW-NBP) can mitigate these problems, but does not easily lead to a distributed implementation due to the non-local nature of the required so-called edge appearance probabilities. In this paper, we propose a variation of TRWNBP, suitable for cooperative localization in wireless networks. Our algorithm uses a fixed edge appearance probability for every edge, and can outperform standard NBP in dense wireless networks.
Resumo:
Belief propagation (BP) is a technique for distributed inference in wireless networks and is often used even when the underlying graphical model contains cycles. In this paper, we propose a uniformly reweighted BP scheme that reduces the impact of cycles by weighting messages by a constant ?edge appearance probability? rho ? 1. We apply this algorithm to distributed binary hypothesis testing problems (e.g., distributed detection) in wireless networks with Markov random field models. We demonstrate that in the considered setting the proposed method outperforms standard BP, while maintaining similar complexity. We then show that the optimal ? can be approximated as a simple function of the average node degree, and can hence be computed in a distributed fashion through a consensus algorithm.
Resumo:
Tree-reweighted belief propagation is a message passing method that has certain advantages compared to traditional belief propagation (BP). However, it fails to outperform BP in a consistent manner, does not lend itself well to distributed implementation, and has not been applied to distributions with higher-order interactions. We propose a method called uniformly-reweighted belief propagation that mitigates these drawbacks. After having shown in previous works that this method can substantially outperform BP in distributed inference with pairwise interaction models, in this paper we extend it to higher-order interactions and apply it to LDPC decoding, leading performance gains over BP.
Resumo:
A number of methods for cooperative localization has been proposed, but most of them provide only location estimate, without associated uncertainty. On the other hand, nonparametric belief propagation (NBP), which provides approximated posterior distributions of the location estimates, is expensive mostly because of the transmission of the particles. In this paper, we propose a novel approach to reduce communication overhead for cooperative positioning using NBP. It is based on: i) communication of the beliefs (instead of the messages), ii) approximation of the belief with Gaussian mixture of very few components, and iii) censoring. According to our simulations results, these modifications reduce significantly communication overhead while providing the estimates almost as accurate as the transmission of the particles.
Resumo:
Distributed target tracking in wireless sensor networks (WSN) is an important problem, in which agreement on the target state can be achieved using conventional consensus methods, which take long to converge. We propose distributed particle filtering based on belief propagation (DPF-BP) consensus, a fast method for target tracking. According to our simulations, DPF-BP provides better performance than DPF based on standard belief consensus (DPF-SBC) in terms of disagreement in the network. However, in terms of root-mean square error, it can outperform DPF-SBC only for a specific number of consensus iterations.
Resumo:
Of the many state-of-the-art methods for cooperative localization in wireless sensor networks (WSN), only very few adapt well to mobile networks. The main problems of the well-known algorithms, based on nonparametric belief propagation (NBP), are the high communication cost and inefficient sampling techniques. Moreover, they either do not use smoothing or just apply it o ine. Therefore, in this article, we propose more flexible and effcient variants of NBP for cooperative localization in mobile networks. In particular, we provide: i) an optional 1-lag smoothing done almost in real-time, ii) a novel low-cost communication protocol based on package approximation and censoring, iii) higher robustness of the standard mixture importance sampling (MIS) technique, and iv) a higher amount of information in the importance densities by using the population Monte Carlo (PMC) approach, or an auxiliary variable. Through extensive simulations, we confirmed that all the proposed techniques outperform the standard NBP method.
Resumo:
Non-parametric belief propagation (NBP) is a well-known message passing method for cooperative localization in wireless networks. However, due to the over-counting problem in the networks with loops, NBP’s convergence is not guaranteed, and its estimates are typically less accurate. One solution for this problem is non-parametric generalized belief propagation based on junction tree. However, this method is intractable in large-scale networks due to the high-complexity of the junction tree formation, and the high-dimensionality of the particles. Therefore, in this article, we propose the non-parametric generalized belief propagation based on pseudo-junction tree (NGBP-PJT). The main difference comparing with the standard method is the formation of pseudo-junction tree, which represents the approximated junction tree based on thin graph. In addition, in order to decrease the number of high-dimensional particles, we use more informative importance density function, and reduce the dimensionality of the messages. As by-product, we also propose NBP based on thin graph (NBP-TG), a cheaper variant of NBP, which runs on the same graph as NGBP-PJT. According to our simulation and experimental results, NGBP-PJT method outperforms NBP and NBP-TG in terms of accuracy, computational, and communication cost in reasonably sized networks.
Resumo:
We employ two different methods, based on belief propagation and TAP,for decoding corrupted messages encoded by employing Sourlas's method, where the code word comprises products of K bits selected randomly from the original message. We show that the equations obtained by the two approaches are similar and provide the same solution as the one obtained by the replica approach in some cases K=2. However, we also show that for K>=3 and unbiased messages the iterative solution is sensitive to the initial conditions and is likely to provide erroneous solutions; and that it is generally beneficial to use Nishimori's temperature, especially in the case of biased messages.
Resumo:
We devise a message passing algorithm for probabilistic inference in composite systems, consisting of a large number of variables, that exhibit weak random interactions among all variables and strong interactions with a small subset of randomly chosen variables; the relative strength of the two interactions is controlled by a free parameter. We examine the performance of the algorithm numerically on a number of systems of this type for varying mixing parameter values.
Resumo:
We consider a variation of the prototype combinatorial optimization problem known as graph colouring. Our optimization goal is to colour the vertices of a graph with a fixed number of colours, in a way to maximize the number of different colours present in the set of nearest neighbours of each given vertex. This problem, which we pictorially call palette-colouring, has been recently addressed as a basic example of a problem arising in the context of distributed data storage. Even though it has not been proved to be NP-complete, random search algorithms find the problem hard to solve. Heuristics based on a naive belief propagation algorithm are observed to work quite well in certain conditions. In this paper, we build upon the mentioned result, working out the correct belief propagation algorithm, which needs to take into account the many-body nature of the constraints present in this problem. This method improves the naive belief propagation approach at the cost of increased computational effort. We also investigate the emergence of a satisfiable-to-unsatisfiable 'phase transition' as a function of the vertex mean degree, for different ensembles of sparse random graphs in the large size ('thermodynamic') limit.
Resumo:
Modern business trends such as agile manufacturing and virtual corporations require high levels of flexibility and responsiveness to consumer demand, and require the ability to quickly and efficiently select trading partners. Automated computational techniques for supply chain formation have the potential to provide significant advantages in terms of speed and efficiency over the traditional manual approach to partner selection. Automated supply chain formation is the process of determining the participants within a supply chain and the terms of the exchanges made between these participants. In this thesis we present an automated technique for supply chain formation based upon the min-sum loopy belief propagation algorithm (LBP). LBP is a decentralised and distributed message-passing algorithm which allows participants to share their beliefs about the optimal structure of the supply chain based upon their costs, capabilities and requirements. We propose a novel framework for the application of LBP to the existing state-of-the-art case of the decentralised supply chain formation problem, and extend this framework to allow for application to further novel and established problem cases. Specifically, the contributions made by this thesis are: • A novel framework to allow for the application of LBP to the decentralised supply chain formation scenario investigated using the current state-of-the-art approach. Our experimental analysis indicates that LBP is able to match or outperform this approach for the vast majority of problem instances tested. • A new solution goal for supply chain formation in which economically motivated producers aim to maximise their profits by intelligently altering their profit margins. We propose a rational pricing strategy that allows producers to earn significantly greater profits than a comparable LBP-based profitmaking approach. • An LBP-based framework which allows the algorithm to be used to solve supply chain formation problems in which goods are exchanged in multiple units, a first for a fully decentralised technique. As well as multiple-unit exchanges, we also model in this scenario realistic constraints such as factory capacities and input-to-output ratios. LBP continues to be able to match or outperform an extended version of the existing state-of-the-art approach in this scenario. • Introduction of a dynamic supply chain formation scenario in which participants are able to alter their properties or to enter or leave the process at any time. Our results suggest that LBP is able to deal easily with individual occurences of these alterations and that performance degrades gracefully when they occur in larger numbers.
Resumo:
Decentralised supply chain formation involves determining the set of producers within a network able to supply goods to one or more consumers at the lowest cost. This problem is frequently tackled using auctions and negotiations. In this paper we show how it can be cast as an optimisation of a pairwise cost function. Optimising this class of functions is NP-hard but good approximations to the global minimum can be obtained using Loopy Belief Propagation (LBP). Here we detail a LBP-based approach to the supply chain formation problem, involving decentralised message-passing between potential participants. Our approach is evaluated against a well-known double-auction method and an optimal centralised technique, showing several improvements: it obtains better solutions for most networks that admit a competitive equilibrium Competitive equilibrium as defined in [3] is used as a means of classifying results on certain networks to allow for minor inefficiencies in their auction protocol and agent bidding strategies. while also solving problems where no competitive equilibrium exists, for which the double-auction method frequently produces inefficient solutions.