58 resultados para Begging.
Resumo:
Begging and food allocation patterns are the outcome of complex and repeated interactions between parents and young. In most systems studied, food allocation is regulated by begging and scramble competition. In contrast, little is understood about how nestling solicitation behaviours will evolve in systems where parents engage in complex patterns of food allocation. Parrots appear to be an excellent group in which to examine the shifting balance between sibling competition and parental control. Studies to date have shown that levels of sibling competition within parrot broods are low, possibly in response to parental control over food distribution. I assess what is known about the function of nestling begging in parrots and evaluate why begging signals appear to function differently in this group.
Resumo:
Altricial nestlings solicit food by begging and engaging in scramble competition. Solicitation displays can thus signal both hunger and competitive ability. I examined nestling solicitation and parental responses in crimson rosellas (Platycercus elegans), a species in which parents engage in complex patterns of food allocation and appear to control the distribution of food. By manipulating the hunger of individual chicks and entire broods, I assessed how chick behaviours and parental food allocation varied with hatching rank, level of hunger, and intensity of nestling competition. Last-hatched chicks begged more than first-hatched chicks irrespective of individual hunger levels. The two parents combined fed individually hungry chicks more, but mothers and fathers varied in their responses to begging chicks: fathers fed last-hatched chicks in proportion to their begging intensity, whereas mothers fed chicks equally. Since fathers generally allocate more food to first-hatched chicks, fathers appear to use begging rates to adjust food allocation to non-preferred chicks within the brood. When I manipulated brood hunger levels, begging rates increased for first- and last-hatched chicks suggesting that chick begging rates are sensitive to the level of competition. This study shows that begging by rosella chicks does not correlate with hunger in a straightforward way and that the primary patterns of food allocation by parents art: not influenced by chick begging. Thus the benefits of increased begging may be limited for nestlings in this species.
Resumo:
The conflict between siblings over how parental resources are divided has promoted the evolution of specific behaviour to outcompete each other. Young animals look out for parents' arrival in order to start begging as quickly as possible, since a rapid begging reaction increases the likelihood of being fed before nestmates. If the young can physically intercept the parents, selection might be operating on the offspring ability to monitor parent arrival (vigilance towards parents) and any sudden modifications in siblings' behaviour (vigilance towards siblings). To investigate the adaptive value of nestling vigilance in the context of family interactions, we recorded which direction barn owl Tyto alba siblings were facing in 89 two-chick broods before the first parental feeding visit of the night. Nestlings were more vigilant towards nest entrance than expected by chance suggesting that vigilance towards parents is an important component of sibling competition. When positioned near the nest-box entrance where parents predictably deliver food, the younger individual (i.e. junior) looked more towards the entrance than its older sibling. Thus, when the likelihood of obtaining a food item is relatively high, juniors are more vigilant than seniors to detect the incoming parent. When positioned at the back of the nest, the senior looked relatively more frequently towards its sibling than the junior did in the same situation. This suggests that when the likelihood of obtaining a food item is relatively low, seniors are more vigilant than juniors to observe their sibling. Because vigilance was not related to hunger level and prey obtaining, we propose the hypothesis that vigilance towards parents and siblings only indirectly influences the outcome of sibling competition.
Resumo:
When siblings differ markedly in their need for food, they may benefit from signalling to each other their willingness to contest the next indivisible food item delivered by the parents. This sib-sib communication system, referred to as 'sibling negotiation', may allow them to adjust optimally to investment in begging. Using barn owl (Two alba) broods. I assessed the role of within-brood age hierarchy on sibling negotiation, and in turn on jostling for position where parents predictably deliver food (i.e. nest-box entrance), begging and within-brood food allocation. More specifically, I examined three predictions derived from a game-theoretical model of sibling negotiation where a senior and a junior sibling compete for food resources (Roulin, 2002a, Johnstone and Roulin, 2003): (1) begging effort invested by the senior sibling should be less sensitive to the junior sibling's negotiation than vice versa; (2) the junior should invest less effort in sibling negotiation than its senior sibling but a similar amount of effort in begging; and (3) within-brood food allocation should be directly related to begging but only indirectly to sibling negotiation. Two-chick broods were created and vocalization in the absence (negotiation signals directed to siblings) and presence (begging signals directed to parents) of parents was recorded. In support of the first prediction, juniors begged at a low cadence after their senior sibling negotiated intensely, probably because negotiation reflects prospective investment in begging and hence willingness to compete. In contrast, the begging of senior siblings was not sensitive to their junior sibling's negotiation. In contrast to the second prediction, juniors negotiated and begged more intensely than their senior sibling apparently because they were hungrier rather than younger. In line with the third prediction, juniors monopolized food delivered by their parents when their senior sibling begged at a low level. The begging cadence of both the junior and senior sibling, the junior's negotiation cadence, the difference in age between the two nest-mates and jostling for position were not associated with the likelihood of monopolizing food. In conclusion, sibling negotiation appears to influence begging behaviour, which, in turn, affects within-brood food allocation. Juniors may negotiate to challenge their senior siblings, and thereby determine whether seniors are less hungry before deciding to beg for food. In contrast, seniors may negotiate to deter juniors from begging.
Resumo:
Ectoparasites are a ubiquitous environmental component of breeding birds, and it has repeatedly been shown that hematophagous ectoparasites such as fleas and mites reduce the quality and number of offspring of bird hosts, thereby lowering the value of a current brood. Selection acting on the hosts will favor physiological and behavioral responses that will reduce the parasites' impact. However, the results of the few bird studies that addressed the question of whether parasitism leads to a higher rate of food provisioning are equivocal, and the begging response to infestation has rarely been quantified. A change in begging activity and parental rate of food provisioning could be predicted in either direction: parents could reduce their investment in the brood in order to invest more in future broods, or they could increase their investment in order to compensate for the parasites' effect on the current brood. Since the nestlings are weakened by the ectoparasites they may beg less, but on the other hand they may beg more in order to obtain more food. In this study we show experimentally that (1) hen fleas (Ceratophyllus gallinae) reduce the body mass and size of great tit (Parus major) nestlings, (2) nestlings of parasitized broods more than double their begging rate, (3) the male parents increase the frequency of feeding trips by over 50%, (4) the females do not adjust feeding rate to the lowered nutritional state of nestlings, and (5) food competition among siblings of parasitized broods is increased. Ultimately the difference in the parental feeding response may be understood as the result of a sex-related difference in the trade-off of investing in current versus future broods.
Resumo:
Parents allocate food resources to their offspring in proportion to the intensity of begging behaviour. Begging encompasses several activities including vocalizations that should honestly signal need and jostling for the position in the nest where parents predictably deliver food items. Although siblings are known to adjust begging level to each other, the underlying mechanism remains unknown. We examined this issue in experimental two-chick broods of the barn owl, Tyto alba, a species in which siblings communicate vocally with each other in the prolonged absence of parents. The function of sib-sib vocal communication, so-called sibling negotiation, is to resolve conflicts over which individual will have priority of access to the next delivered indivisible food item. We found that when a nestling produced longer negotiation calls and stood closer to the nestbox entrance in the absence of parents, its sibling vocally negotiated at a lower rate. Additionally, when an individual produced more negotiation calls in the absence of parents, its sibling begged less intensely at the parent's return, with begging being the key factor that determined which nestling obtained a food item. We conclude that position in the nest and the duration of negotiation calls produced in the absence of parents influence the rate of producing negotiation calls, which in turn influences the rate at which siblings beg for food from their parents. Adjusting begging behaviour could therefore depend on complex sib-sib interactions taking place in the prolonged absence of parents.
Resumo:
In many species, young solicit food from their parents, which respond by feeding them. Because of the difference in genetic make-up between parents and their offspring and the consequent conflict, this interaction is often studied as a paradigm for the evolution of communication. Existent theoretical models demonstrate that chick signaling and parent responding can be stable if solicitation is a costly signal. The marginal cost of producing stronger signals allows the system to converge to an equilibrium: young beg with intensity that reflects their need, and parents use this information to maximize their own inclusive fitness. However, we show that there is another equilibrium where chicks do not beg and parents’ provisioning effort is optimal with respect to the statistically probable distribution of chicks’ states. Expected fitness for parents and offspring at the nonsignaling equilibrium is higher than at the signaling equilibrium. Because nonsignaling is stable and it is likely to be the ancestral condition, we would like to know how natural systems evolved from nonsignaling to signaling. We suggest that begging may have evolved through direct sibling fighting before the establishment of a parental response, that is, that nonsignaling squabbling leads to signaling. In multiple-offspring broods, young following a condition-dependent strategy in the contest for resources provide information about their condition. Parents can use this information even though it is not an adaptation for communication, and evolution will lead the system to the signaling equilibrium. This interpretation implies that signaling evolved in multiple-offspring broods, but given that signaling is evolutionarily stable, it would also be favored in species which secondarily evolved single-chick broods.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Chez les animaux, les jeunes dépendant des parents durant leur développement sont en compétition pour obtenir la nourriture, qu'ils quémandent par des cris et postures ostentatoires et se disputent physiquement. Les frères et soeurs n'ont pas la même compétitivité, en particulier s'ils diffèrent en âge, et leur niveau de faim fluctue dans le temps. Comme dans tout type de compétition, chacun doit ajuster son investissement aux rivaux, c'est à dire aux besoins et comportements de ses frères et soeurs. Dans le contexte de la famille, selon la théorie de sélection de parentèle, les jeunes bénéficient de leur survie mutuelle et donc de la propagation de la part de gènes qu'ils ont en commun. L'hypothèse de la « négociation frères-soeurs » prédit que, sous certaines conditions, les jeunes négocient entre eux la nourriture, ce qui réduit les coûts de compétition et permet de favoriser les frères et soeurs les plus affamés. La littérature actuelle se focalise sur les signaux de quémande entre enfants et parents et les interactions compétitives frères-soeurs sont étudiées principalement au sein de paires, alors que les nichées ou portées en comprennent souvent de nombreux. Cette thèse vise à mieux comprendre comment et jusqu'à quel point plusieurs jeunes ajustent mutuellement leurs signaux de besoin. C'est une question importante, étant donné que cela influence la répartition de nourriture entre eux, donc la résolution du conflit qui les oppose et à terme leur valeur évolutive. Le modèle d'étude est la chouette effraie (Tyto alba), chez laquelle jusqu'à neufs poussins émettent des milliers de cris chacun par nuit. Ils négocieraient entre eux la prochaine proie indivisible rapportée au nid avant que les parents ne reviennent : un poussin affamé crie plus qu'un autre moins affamé, ce qui dissuade ce dernier de crier en retour et par la suite de quémander la nourriture aux parents. L'investissement optimal correspondrait donc à écarter son frère en permanence vu que l'arrivée des parents est imprévisible, mais à moindre coût. Dans un premier axe, nous avons exploré au sein de dyades les mécanismes acoustiques permettant aux poussins de doser leur effort vocal durant les heures de compétition où ils sont laissés seuls au nid. Nous avons trouvé que les poussins évitent de crier simultanément, ce qui optimiserait la discrimination du nombre et de la durée de leurs cris, lesquels reflètent de façon honnête leur niveau de faim et donc leur motivation. L'alternance des cris paraît particulièrement adaptée au fait que les poussins se fient à des variations temporelles subtiles dans le rythme et la durée de leurs vocalisations pour prendre la parole. En particulier, allonger ses cris tout en criant moins dissuade efficacement le rival de répondre, ce qui permet de monopoliser la parole dans de longs « monologues ». Ces règles seraient universelles puisqu'elles ne dépendent pas de la séniorité, de la faim, ni de la parenté et les poussins répondent à un playback de façon similaire à un vrai frère. Tous ces résultats apportent la première preuve expérimentale que les juvéniles communiquent de façon honnête sur leurs besoins, ajustent activement le rythme de leurs cris et utilisent des composantes multiples de leurs vocalisations d'une façon qui réduit le coût de la compétition. De plus, il s'agit de la première démonstration que des règles de conversation régissent de longs échanges vocaux chez les animaux de façon comparable aux règles basiques observées chez l'Homme. Dans un second axe, nous avons exploré les stratégies comportementales que les poussins adoptent pour rivaliser avec plusieurs frères et soeurs, par le biais d'expériences de playback. Nous avons trouvé que les poussins mémorisent des asymétries de compétitivité entre deux individus qui dialoguent et répondent plus agressivement au moins compétitif une fois qu'ils sont confrontés à chacun isolément. Dans la même ligne, quand ils entendent un nombre variable d'individus criant à un taux variable, les poussins investissent le plus contre des rivaux moins nombreux et moins motivés. En accord avec les prédictions des modèles théoriques, les poussins de chouette effraie escaladent donc les conflits pour lesquels leur chance de gagner contrebalance le plus l'énergie dépensée. Nous révélons ainsi que 1) les jeunes frères et soeurs 'espionnent' les interactions de leurs rivaux pour évaluer leur compétitivité relative, ce qui est sans doute moins coûteux qu'une confrontation directe avec chacun, et 2) dosent leur investissement vocal en fonction du nombre de rivaux actuellement en compétition et de leur motivation de façon concomitante. Ces résultats montrent que les interactions entre frères et soeurs au nid reposent sur des mécanismes similaires à ceux observés, mais encore de façon anecdotique, chez les adultes non apparentés qui se disputent les territoires et partenaires sexuels. Cette thèse souligne donc combien il est crucial de considérer dorénavant la famille comme un réseau de communication à part entière pour mieux comprendre comment les jeunes résolvent les conflits autour du partage des ressources parentales. Plus généralement, elle révèle l'importance de la dynamique temporelle des vocalisations dans les conflits et la communication des animaux. A la lumière de nos résultats, la chouette effraie apparaît comme un modèle clé pour de futures recherches sur la résolution des conflits et la communication acoustique. - In species with parental care, offspring contest priority access to food by begging through conspicuous postures and vocalisations and by physically jockeying. Siblings differ in their competitiveness, especially in the case of age and size hierarchies, and their hunger level fluctuates in time. As in competition in general, each individual should adjust its investment to opponents that is to say to its siblings' needs and behaviours. In the particular context of family, according to kin selection theory, siblings derive extra fitness benefits from their mutual survival and hence the spreading of the genes they share. The "sibling negotiation" predicts that, under certain conditions, young would negotiate among them priority access to food, which reduces competition costs and enables promoting the most hungry siblings. To date, the literature focuses on signals of need between parents and offspring and competitive interactions (in particular among siblings) are mostly studied within pairwise interactions, yet they commonly involve more numerous rivals. This PhD aims at better understanding how and the extent to which several young siblings compete through signalling. This is important since this influences how food is allocated among them, thus the outcome of sibling rivalry and ultimately their fitness. I use the barn owl (Tyto alba) as a model, in which the one to nine nestlings emit a simple noisy call thousands of times per night. Thereby, they would negotiate among them priority access to the indivisible food next delivered prior to parents' feeding visits. A hungry nestling emits more calls than a less hungry sibling, which deters it to call in return and ultimately beg food at parents. The optimal investment thus corresponds to constantly deterring the rival to compete, given that parents' arrival is unpredictable, but at the lowest costs. In the first axis of my thesis, we explored within dyads the acoustic mechanisms by which owlets dose vocal effort when competing during the hours they are left alone. We found that owlets avoid overlapping each other's calls. This would enhance the discrimination of both call number and duration, which honestly reflect individuals' hunger level and hence motivation to compete. Such antiphony seems best adapted to the fact that siblings actually use subtle temporal variations in the rhythm and duration of their calls to take or give their turn. Owlets alternate monologs, in which lengthening calls efficiently deters the rival to respond while reducing call number. Such rules depend neither on seniority, hunger level nor kinship since nestlings responded similarly to a live sibling and an unrelated playback individual. Taken together, these findings provide the first experimental proof that dependent young honestly communicate about their need, actively adjust the timing of their calls and use multicomponent signals in a way that reduces vocal costs. Moreover, this is the first demonstration of conversational rules underlying animal long-lasting vocal exchanges comparable to the basic turn-taking signals observed in humans. In the second axis, we focused on the behavioural strategies owlets adopt to compete with more than one sibling, using playback experiments. We found that singleton bystanders memorised competitive asymmetries between two playback individuals dialoguing and responded more aggressively to the submissive one once they later faced each of both alone. Moreover, when hearing a varying number of nestlings calling at varying rates, owlets vocally invested the most towards fewer and less motivated rivals. In line with predictions from models on conflict settlement, barn owls thus escalate contests in which their chance of winning best counterbalances the energy spent. These results reveal that young socially eavesdrop on their siblings' interactions to assess their relative competitiveness at likely lower costs than direct confrontation, and dose vocal effort relative to both their number and motivation. This shows that young siblings' interactions imply mechanisms similar to those observed, yet still anecdotally, in unrelated adults that contest mates and territories. This PhD therefore highlights how crucial it is to further consider family as a communication network to better understand how siblings resolve conflicts over the share of parental resources. More generally, it provides important insights into the role of the temporal dynamics of signalling during animal contests and communication. In the light of our findings, the barn owl emerges as a key model for future research on conflict resolution and acoustic communication in animals.
Resumo:
To compete over limited parental resources, young animals communicate with their parents and siblings by producing honest vocal signals of need. Components of begging calls that are sensitive to food deprivation may honestly signal need, whereas other components may be associated with individual-specific attributes that do not change with time such as identity, sex, absolute age and hierarchy. In a sib-sib communication system where barn owl (Tyto alba) nestlings vocally negotiate priority access to food resources, we show that calls have individual signatures that are used by nestlings to recognize which siblings are motivated to compete, even if most vocalization features vary with hunger level. Nestlings were more identifiable when food-deprived than food-satiated, suggesting that vocal identity is emphasized when the benefit of winning a vocal contest is higher. In broods where siblings interact iteratively, we speculate that individual-specific signature permits siblings to verify that the most vocal individual in the absence of parents is the one that indeed perceived the food brought by parents. Individual recognition may also allow nestlings to associate identity with individual-specific characteristics such as position in the within-brood dominance hierarchy. Calls indeed revealed age hierarchy and to a lower extent sex and absolute age. Using a cross-fostering experimental design, we show that most acoustic features were related to the nest of origin (but not the nest of rearing), suggesting a genetic or an early developmental effect on the ontogeny of vocal signatures. To conclude, our study suggests that sibling competition has promoted the evolution of vocal behaviours that signal not only hunger level but also intrinsic individual characteristics such as identity, family, sex and age.
Resumo:
Nestling begging behaviour may be an honest signal of need used by parents to adjust optimally both feeding rate and within-brood food allocation. Although several studies showed that mothers and fathers can be differentially responsive to nestling begging behaviour with one parent showing a stronger tendency to feed the offspring that beg the most, little information is yet available on whether offspring beg for food at different intensities from the mother than father. In the present study, we investigated in nestling barn owls whether the intensity of vocal begging behaviour in the presence of the mother and in the presence of the father is different. A difference is expected because reproductive tasks are divided between the sexes with fathers bringing more food items to the nest than mothers. The results show that although mothers transfer their prey item to one of the offspring more rapidly than fathers once in their nestbox, nestlings begged more intensely in the presence of their mother than in the presence of their father. To our knowledge, this is the first empirical evidence that offspring vocalize to different levels in the presence of their mother than in the presence of their father.
Resumo:
Game theory states that iterative interactions between individuals are necessary to adjust behaviour optimally to one another. Although our understanding of the role of begging signals in the resolution of parent-offspring conflict over parental investment rests on game theory implying repeated interactions between family members, empiricists usually consider interactions at the exact moment when parents allocate food among the brood. Therefore, the mechanisms by which siblings adjust signalling level to one another remain unclear. We tackled this issue in the barn owl, Tyto alba. In the absence of parents, hungry nestlings signal vocally to siblings their intention to contest vigorously the next, indivisible, food item. Such behaviour deters siblings from competing and begging when parents return to the nest. In experimental two-chick broods, nestlings producing the longest calls in the absence of parents, a signal of hunger level, were more successful at monopolizing the food item at the first parental feeding visit of the night. Moreover, nestlings increased (versus decreased) call duration when their sibling produced longer (versus shorter) calls, and an individual was more likely to call again if its sibling began to vocalize before or just after it had ended its previous call. These results are in agreement with the hypothesis that siblings challenge each other vocally to reinforce the honesty of sib-sib communication and to resolve conflicts over which individual will have priority of access to the next delivered food item. Siblings challenge each other vocally to confirm that the level of signalling accurately reflects motivation.
Resumo:
In species with parental care, siblings compete for access to food resources. Typically, they vocally signal their level of need to each other and to parents, and jostle for the position in the nest where parents deliver food. Although food shortage and social interactions are stressful, little is known about the effect of stress on the way siblings resolve the conflict over how food is shared among them. Because glucocorticoid hormones mediate physiological and behavioral responses to stressors, we tested whether corticosterone, the main glucocorticoid in birds, modulates physical and vocal signaling used by barn owl siblings (Tyto alba) to compete for food. Although corticosterone-implanted (cort-) nestlings and placebo-nestlings were similarly successful to monopolize food, they employed different behavioral strategies. Compared to placebo-nestlings, cort-individuals reduced the rate of vocally communicating with their siblings (but not with their parents) but were positioned closer to the nest-box entrance where parents predictably deliver food. Therefore, corticosterone induced nestlings to increase their effort in physical competition for the best nest position at the expense of investment in sib-sib communication without modifying vocal begging signals directed to parents. This suggests that in the barn owl stress alters nestlings' behavior and corticosterone could mediate the trade-off between scramble competition and vocal sib-sib communication. We conclude that stressful environments may prevent the evolution of sib-sib communication as a way to resolve family conflicts peacefully.
Resumo:
Animals can compete for resources by displaying various acoustic signals that may differentially affect the outcome of competition. We propose the hypothesis that the most efficient signal to deter opponents should be the one that most honestly reveals motivation to compete. We tested this hypothesis in the barn owl (Tyto alba) in which nestlings produce more calls of longer duration than siblings to compete for priority access to the indivisible prey item their parents will deliver next. Because nestlings increase call rate to a larger extent than call duration when they become hungrier, call rate would signal more accurately hunger level. This leads us to propose three predictions. First, a high number of calls should be more efficient in deterring siblings to compete than long calls. Second, the rate at which an individual calls should be more sensitive to variation in the intensity of the sibling vocal competition than the duration of its calls. Third, call rate should influence competitors' vocalization for a longer period of time than call duration. To test these three predictions we performed playback experiments by broadcasting to singleton nestlings calls of varying durations and at different rates. According to the first prediction, singleton nestlings became less vocal to a larger extent when we broadcasted more calls compared to longer calls. In line with the second prediction, nestlings reduced vocalization rate to a larger extent than call duration when we broadcasted more or longer calls. Finally, call rate had a longer influence on opponent's vocal behavior than call duration. Young animals thus actively and differentially use multiple signaling components to compete with their siblings over parental resources.