952 resultados para Bee abundance
Resumo:
Diversity and abundance of wild-insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. Here, we show universally positive associations of fruit set with wild-insect visits to flowers in 41 crop systems worldwide, and thus clearly demonstrate their agricultural value. In contrast, fruit set increased significantly with visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively, because increase in their visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Further, visitation by wild insects and honey bees promoted fruit set independently, so high abundance of managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild-insect assemblages will enhance global crop yields.
Resumo:
The diversity and abundance of wild insect pollinators have declined in many agricultural landscapes. Whether such declines reduce crop yields, or are mitigated by managed pollinators such as honey bees, is unclear. We found universally positive associations of fruit set with flower visitation by wild insects in 41 crop systems worldwide. In contrast, fruit set increased significantly with flower visitation by honey bees in only 14% of the systems surveyed. Overall, wild insects pollinated crops more effectively; an increase in wild insect visitation enhanced fruit set by twice as much as an equivalent increase in honey bee visitation. Visitation by wild insects and honey bees promoted fruit set independently, so pollination by managed honey bees supplemented, rather than substituted for, pollination by wild insects. Our results suggest that new practices for integrated management of both honey bees and diverse wild insect assemblages will enhance global crop yields.
Resumo:
Insect pollination is an essential ecosystem service, and bees are the principal pollinators of wild and cultivated plants. Habitat management and enhancement are a proven way to encourage wild bee populations, providing them with food and nesting resources. I examined bee diversity and abundance in plots managed by The Nature Conservancy near Wood River, NE. The plots were seeded with 2 seed mixes at 2 seeding rates: high diversity mix at the recommended rate, high diversity mix double the recommended rate, Natural Resources Conservation Service (NRCS) conservation planting (CP) 25 mix at one-half the recommended rate, and NRCS CP25 mix at the recommended rate. I measured wild bee abundance and diversity, and established a database of wild bees associated with the plots. I also compared genus richness and abundance among the plots using and aerial net and blue vane traps to collect bees. Significant differences were not observed in genus richness and diversity among the plots; however, plot size and the ability of blue vane traps to draw bees from a long distance may have influenced my results. In 2008, 15 genera and 95 individual bees were collected using an aerial net and in 2009, 32 genera and 6,103 individual bees were collected using blue vane traps. I also studied the beneficial insects associated with native Nebraska flora. Seventeen species of native, perennial flora were established in 3 separate plots located in eastern Nebraska. I transplanted four plants of each species in randomized 0.61 m x 0.61 m squares of a 3.05 m x 9.14 m plot. Arthropods were sampled using a modified leaf blower/vacuum. Insects and other arthropods were identified to family and organized into groups of predators, parasites, pollinators, herbivores, and miscellaneous. Associations between plant species and families of beneficial arthropods (predators, parasites, and pollinators) were made. Pycnanthemum flexuosum Walter attracted significantly more beneficial arthropod families than 7 other species of plants tested. Dalea purpurea Vent and Liatris punctata Hook also attracted significantly fewer beneficial arthropod families than 4 other species of plants tested. In total, 31 predator, 11 parasitic, 4 pollinator, 31 herbivore, and 10 miscellaneous families of arthropods were recorded.
Resumo:
This study examined the impact of habitat restoration on bee communities (Hymenoptera: Apidae) of the Niagara Region, Ontario, Canada. Bee abundance and diversity was studied in three restored landfill sites: the Glenridge Quarry Naturalization Site (GQNS) in St. Catharines, Elm Street Naturalization Site in Port Colborne, and Station Road Naturalization Site in Wainfleet during 2011 and 2012. GQNS represented older sites restored from 2001-2003. Elm and Station sites represented newly restored landfills as of 2011. These sites were compared to control sites at Brock University where bee communities are well established and again to other landfills where no stable habitat was available before restoration. The objective of this study is to investigate the impact of restoration level on bee abundance and diversity in restored landfill sites of the Niagara Region. Based on the increased disturbance hypothesis (InDH) and the intermediate disturbance hypothesis (IDH), I hypothesized that bee abundance and diversity will follow two patterns. First pattern according to InDH suggest that as the disturbance decrease the bee abundance and diversity will increased. Second pattern according to the IDH bee abundance and diversity will be the highest at the intermediate level of disturbance. A total of 7 173 bees were collected using pan traps and flower collections, from May to October 2011 and 2012. Bees were classified to five families, 21 genera and sub-genera, containing at least 78 species. In 2011 bee abundance was not significantly different among restoration levels while in 2012 bee abundance was significant difference among restoration level. According to family there were no significant difference in Halictidae and Apidae abundance among restoration level while Colletidae and Megachilidae abundance were varied among restoration levels. The bee species richness was highest in the newly restored sites followed by restored control sites, and then the control site. The current study demonstrates that habitat restoration results in rapid increases in bee abundance and diversity for newly restored sites, and, further, that it takes only 2-3 years for bee assemblages in newly restored sites to arrive at the same levels of abundance and diversity as in nearby control sites where bee communities are well established.
Resumo:
A wild bee community in southern St. Catharines, Ontario, Canada, was studied from 2003 to 2012 to analyze the effects of primary succession on abundance and diversity. At a former landfill site near Brock University, which previously contained no bees, the number of bees and bee species was expected to increase rapidly following measures to restore the site to grassy meadow habitat. The Intermediate Disturbance Hypothesis (IDH) states that over time, succession occurs. Abundance and diversity increase initially and peak when pioneers coexist with specialized species, then decline because of competitive exclusion. Alternatively, abundance and diversity may continue to increase and stabilize without declining. Bees were sampled repeatedly among years from newer restoration sites (revegetated in 2003), older restoration sites on the periphery of the former landfill (revegetated in 2000), and nearby low disturbance grassy field (i.e. control) sites. In the newer sites, bee abundance and diversity increased then decreased while in older restoration and control sites mainly decreased. This pattern of succession matches the general predictions of the IDH, although declines were at least partially related to drought. By 2006, total bee abundance levels converged among all sites, indicating rapid colonization and succession, and by 2012 diversity levels were similar among sites as well, suggesting that the bee community was fully restored or nearly so within the ten-year study period.
Resumo:
To better understand the dynamics of bee populations in crops, we assessed the effect of landscape context and habitat type on bee communities in annual entomophilous crops in Europe. We quantified bee communities in five pairs of crop-country: buckwheat in Poland, cantaloupe in France, field beans in the UK, spring oilseed rape in Sweden, and strawberries in Germany. For each country, 7-10 study fields were sampled over a gradient of increasing proportion of semi-natural habitats in the surrounding landscape. The CORINE land cover classification was used to characterize the landscape over a 3 km radius around each study field and we used multivariate and regression analyses to quantify the impact of landscape features on bee abundance and diversity at the sub-generic taxonomic level. Neither overall wild bee abundance nor diversity, taken as the number of sub-genera. was significantly affected by the proportion of semi-natural habitat. Therefore, we used the most precise level of the CORINE classification to examine the possible links between specific landscape features and wild bee communities. Bee community composition fell into three distinct groups across Europe: group I included Poland, Germany, and Sweden, group 2 the UK, and group 3 France. Among all three groups, wild bee abundance and sub-generic diversity were affected by 17 landscape elements including some semi-natural habitats (e.g., transitional wood land-shrub), some urban habitats (e.g., sport and leisure facilities) and some crop habitats (e.g., non-irrigated arable land). Some bee taxa were positively affected by urban habitats only, others by semi-natural habitats only, and others by a combination of semi-natural, urban and crop habitats. Bee sub-genera favoured by urban and crop habitats were more resistant to landscape change than those favoured only by semi-natural habitats. In agroecosystems, the agricultural intensification defined as the loss of semi-natural habitats does not necessarily cause a decline in evenness at the local level, but can change community composition towards a bee fauna dominated by common taxa. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.
Resumo:
Wild pollinators have been shown to enhance the pollination of Brassica napus(oilseed rape) and thus increase its market value. Several studies have previously shown that pollination services are greater in crops adjoining forest patches or other seminatural habitats than in crops completely surrounded by other crops. In this study, we investigated the specific importance of forest edges in providing potential pollinators in B. napus fields in two areas in France. Bees were caught with yellow pan traps at increasing distances from both warm and cold forest edges into B. napus fields during the blooming period. A total of 4594 individual bees, representing six families and 83 taxa, were collected. We found that both bee abundance and taxa richness were negatively affected by the distance from forest edge. However, responses varied between bee groups and edge orientations. The ITD (Inter-Tegular distance) of the species, a good proxy for bee foraging range, seems to limit how far the bees can travel from the forest edge. We found a greater abundance of cuckoo bees (Nomada spp.) of Andrena spp. and Andrena spp. males at forest edges, which we assume indicate suitable nesting sites, or at least mating sites, for some abundant Andrena species and their parasites (Fig. 1). Synthesis and Applications. This study provides one of the first examples in temperate ecosystems of how forest edges may actually act as a reservoir of potential pollinators and directly benefit agricultural crops by providing nesting or mating sites for important early spring pollinators. Policymakers and land managers should take forest edges into account and encourage their protection in the agricultural matrix to promote wild bees and their pollination services.
Resumo:
Pollinators face many challenges within agricultural systems due to landscape changes and intensification which can affect resource availability that can impact pollination services. This paper examines pigeon pea pollination and considers how landscape context and agricultural intensification in terms of pesticide use affects the abundance of bees characterized by species guilds on crops. The study was conducted on six paired farms across a gradient of habitat complexity based on the distance of each farm from adjacent semi-natural vegetation in Kibwezi Sub-county, Kenya. The study found that farms which do not use insecticides in farm management, but are in close proximity to natural habitat have greater bee guild abundance, but at further distances, overall abundance is reduced with or without insecticide use. At 1 km landscape radius, the complexity of habitats but not patch size had a positive impact on the abundance of cavity nesting bees and mason bees, which can be attributed to the interspersion of the small-holder farms with semi-natural habitats across the landscapes producing mosaics of heterogeneous habitats. The study revealed the strongest relationships between fruit set and bee abundance to be with the carpenter bee, social bee and solitary bee guilds, which are among the most abundant bees visiting pigeon pea flowers in this system. Our findings provide the foundation for conservation efforts by identifying which bee guilds pollinated pigeon peas. From this study, we suggest managing the floral and nesting resources that would best support the most abundant crop pollinators, and also reducing insecticide application to the crop.
Resumo:
The recent growth in bioenergy crop cultivation, stimulated by the need to implement measures to reduce net CO emissions, is driving major land-use changes with consequences for biodiversity and ecosystem service provision. Although the type of bioenergy crop and its associated management is likely to affect biodiversity at the local (field) scale, landscape context and its interaction with crop type may also influence biodiversity on farms. In this study, we assessed the impact of replacing conventional agricultural crops with two model bioenergy crops (either oilseed rape Brassica napus or Miscanthus × giganteus) on vascular plant, bumblebee, solitary bee, hoverfly and carabid beetle richness, diversity and abundance in 50 sites in Ireland. We assessed whether within-field biodiversity was also related to surrounding landscape structure. We found that local- and landscape-scale variables correlated with biodiversity in these agricultural landscapes. Overall, the differences between the bioenergy crops and the conventional crops on farmland biodiversity were mostly positive (e.g. higher vascular plant richness in Miscanthus planted on former conventional tillage, higher solitary bee abundance and richness in Miscanthus and oilseed rape compared with conventional crops) or neutral (e.g. no differences between crop types for hoverflies and bumblebees). We showed that these crop type effects were independent of (i.e. no interactions with) the surrounding landscape composition and configuration. However, surrounding landscape context did relate to biodiversity in these farms, negatively for carabid beetles and positively for hoverflies. Although we conclude that the bioenergy crops compared favourably with conventional crops in terms of biodiversity of the taxa studied at the field scale, the effects of large-scale planting in these landscapes could result in very different impacts. Maintaining ecosystem functioning and the delivery of ecosystem services will require a greater understanding of impacts at the landscape scale to ensure the sustainable development of climate change mitigation measures.
Resumo:
The main aims of this study were to assess grazing impacts on bee communities in fragmented mediterranean shrubland (phrygana) and woodland habitats that also experience frequent wildfires, and to explain the mechanisms by which these impacts occur. Fieldwork was carried out in 1999 and 2000 on Mount Carmel, in northern Israel, a known hot-spot for bee diversity. Habitats with a range of post-burn ages and varying intensities of cattle grazing were surveyed by transect recording, grazing levels, and the diversity and abundance of both flowers and bees were measured. The species richness of both bees and flowers were highest at moderate to high grazing intensities, and path-analysis indicated that the effects of both grazing and fire on bee diversity were mediated mainly through changes in flower diversity, herb flowers being more important than shrubs. The abundance of bees increased with intensified grazing pressure even at the highest levels surveyed. Surprisingly though, changes in bee abundance at high grazing levels were not caused directly by changes in flower cover. The variation in bee abundance may have been due to higher numbers of solitary bees from the family Halictidae in grazed sites, where compacted ground (nesting resource) and composites (forage resource) were abundant. The effects of grazing on plants were clearest in the intermediate-aged sites, where cattle inhibited the growth of some of the dominant shrubs, creating or maintaining more open patches where light-demanding herbs could grow, thus allowing a diverse flora to develop. Overall, bee communities benefit from a relatively high level of grazing in phrygana. Although bee and flower diversity may decrease under very heavy grazing, the present levels of grazing on Mount Carmel appear to have only beneficial effects on the bee community.
Resumo:
Insect pollinators provide a critical ecosystem service by pollinating many wild flowers and crops. It is therefore essential to be able to effectively survey and monitor pollinator communities across a range of habitats, and in particular, sample the often stratified parts of the habitats where insects are found. To date, a wide array of sampling methods have been used to collect insect pollinators, but no single method has been used effectively to sample across habitat types and throughout the spatial structure of habitats. Here we present a method of ‘aerial pan-trapping’ that allows insect pollinators to be sampled across the vertical strata from the canopy of forests to agro-ecosystems. We surveyed and compared the species richness and abundance of a wide range of insect pollinators in agricultural, secondary regenerating forest and primary forest habitats in Ghana to evaluate the usefulness of this approach. In addition to confirming the efficacy of the method at heights of up to 30 metres and the effects of trap color on catch, we found greatest insect abundance in agricultural land and higher bee abundance and species richness in undisturbed forest compared to secondary forest.
Resumo:
Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.
Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects
Resumo:
Insect pollinators provide a crucial ecosystem service, but are under threat. Urban areas could be important for pollinators, though their value relative to other habitats is poorly known. We compared pollinator communities using quantified flower-visitation networks in 36 sites (each 1 km2) in three landscapes: urban, farmland and nature reserves. Overall, flower-visitor abundance and species richness did not differ significantly between the three landscape types. Bee abundance did not differ between landscapes, but bee species richness was higher in urban areas than farmland. Hoverfly abundance was higher in farmland and nature reserves than urban sites, but species richness did not differ significantly. While urban pollinator assemblages were more homogeneous across space than those in farmland or nature reserves, there was no significant difference in the numbers of rarer species between the three landscapes. Network-level specialization was higher in farmland than urban sites. Relative to other habitats, urban visitors foraged from a greater number of plant species (higher generality) but also visited a lower proportion of available plant species (higher specialization), both possibly driven by higher urban plant richness. Urban areas are growing, and improving their value for pollinators should be part of any national strategy to conserve and restore pollinators.
Resumo:
Bees are a key component of biodiversity as they ensure a crucial ecosystem service: pollination. This ecosystem service is nowadays threatened, because bees suffer from agricultural intensification. Yet, bees rarely benefit from the measures established to promote biodiversity in farmland, such as agri-environment schemes (AES). We experimentally tested if the spatio-temporal modification of mowing regimes within extensively managed hay meadows, a widespread AES, can promote bees. We applied a randomized block design, replicated 12 times across the Swiss lowlands, that consisted of three different mowing treatments: 1) first cut not before 15 June (conventional regime for meadows within Swiss AES); 2) first cut not before 15 June, as treatment 1 but with 15% of area left uncut serving as a refuge; 3) first cut not before 15 July. Bees were collected with pan traps, twice during the vegetation season (before and after mowing). Wild bee abundance and species richness significantly increased in meadows where uncut refuges were left, in comparison to meadows without refuges: there was both an immediate (within year) and cumulative (from one year to the following) positive effect of the uncut refuge treatment. An immediate positive effect of delayed mowing was also evidenced in both wild bees and honey bees. Conventional AES could easily accommodate such a simple management prescription that promotes farmland biodiversity and is likely to enhance pollination services.