964 resultados para Bed-material transport


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"February 1964."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electromigration, mostly known for its damaging effects in microelectronic devices, is basically a material transport phenomenon driven by the electric field and kinetically controlled by diffusion. In this work, we show how controlled electromigration can be used to create scientifically interesting and technologically useful micro-/nano-scale patterns, which are otherwise extremely difficult to fabricate using conventional cleanroom practices, and present a few examples of such patterns. In a solid thin-film structure, electromigration is used to generate pores at preset locations for enhancing the sensitivity of a MEMS sensor. In addition to electromigration in solids, the flow instability associated with the electromigration-induced long-range flow of liquid metals is shown to form numerous structures with high surface area to volume ratio. In very thin solid films on non-conductive substrates, solidification of flow-affected region results in the formation of several features, such as nano-/micro-sized discrete metallic beads, 3D structures consisting of nano-stepped stairs, etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variety of laser systems available to industrial laser users is growing and the choice of the correct laser for a material target application is often based on an empirical assessment. Industrial master oscillator power amplifier systems with tuneable temporal pulse shapes have now entered the market, providing enormous pulse parameter flexibility in an already crowded parameter space. In this paper, an approach is developed to design interaction parameters based on observations of material responses. Energy and material transport mechanisms are studied using pulsed digital holography, post process analysis techniques and finite-difference modelling to understand the key response mechanisms for a variety of temporal pulse envelopes incident on a silicon (1/1/1) substrate. The temporal envelope is shown to be the primary control parameter of the source term that determines the subsequent material response and the resulting surface morphology. A double peak energy-bridged temporal pulse shape designed through direct application of holographic imaging data is shown to substantially improve surface quality. © 2014 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introducing the growth interruption between the InAs deposition and subsequent GaAs growth in self-assembled quantum dot (QD) structures, the material transport process in the InAs layers has been investigated by photoluminescence and transmission electron microscopy measurement. InAs material in structures without misfit dislocations transfers from the wetting layer to QDs corresponding to the red-shift of PL peak energy due to interruption. On the other hand, the PL peak shifts to higher energy in the structures with dislocations. In this case, the misfit dislocations would capture the InAs material from the surrounding wetting layer and coherent islands leading to the reduction of the size of these QDs. The variations in the PL intensity and Linewidth are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent flood events in Switzerland and Western Austria in 2005 were characterised by an increase in impacts and associated losses due to the transport of woody material. As a consequence, protection measures and bridges suffered considerable damages. Furthermore, cross-sectional obstructions due to woody material entrapment caused unexpected flood plain inundations resulting in severe damage to elements at risk. Until now, the transport of woody material is neither sufficiently taken into account nor systematically considered, leading to prediction inaccuracies during the procedure of hazard mapping. To close this gap, we propose a modelling approach that (1) allows the estimation of woody material recruitment from wood-covered banks and flood plains; (2) allows the evaluation of the disposition for woody material entrainment and transport to selected critical configurations along the stream and that (3) enables the delineation of hazard process patterns at these critical configurations. Results from a case study suggest the general applicability of the concept. This contribution to woody material transport analysis refines flood hazard assessments due to the consideration of woody material transport scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hazardous materials are substances that, if not regulated, can pose a threat to human populations and their environmental health, safety or property when transported in commerce. About 1.5 million tons of hazardous material shipments are transported by truck in the US annually, with a steady increase of approximately 5% per year. The objective of this study was to develop a routing tool for hazardous material transport in order to facilitate reduced environmental impacts and less transportation difficulties, yet would also find paths that were still compelling for the shipping carriers as a matter of trucking cost. The study started with identification of inhalation hazard impact zones and explosion protective areas around the location of hypothetical hazardous material releases, considering different parameters (i.e., chemicals characteristics, release quantities, atmospheric condition, etc.). Results showed that depending on the quantity of release, chemical, and atmospheric stability (a function of wind speed, meteorology, sky cover, time and location of accidents, etc.) the consequence of these incidents can differ. The study was extended by selection of other evaluation criteria for further investigation because health risk as an evaluation criterion would not be the only concern in selection of routes. Transportation difficulties (i.e., road blockage and congestion) were incorporated as important factor due to their indirect impact/cost on the users of transportation networks. Trucking costs were also considered as one of the primary criteria in selection of hazardous material paths; otherwise the suggested routes would have not been convincing for the shipping companies. The last but not least criterion was proximity of public places to the routes. The approach evolved from a simple framework to a complicated and efficient GIS-based tool able to investigate transportation networks of any given study area, and capable of generating best routing options for cargos. The suggested tool uses a multi-criteria-decision-making method, which considers the priorities of the decision makers in choosing the cargo routes. Comparison of the routing options based on each criterion and also the overall suitableness of the path in regards to all the criteria (using a multi-criteria-decision-making method) showed that using similar tools as the one proposed by this study can provide decision makers insights in the area of hazardous material transport. This tool shows the probable consequences of considering each path in a very easily understandable way; in the formats of maps and tables, which makes the tradeoffs of costs and risks considerably simpler, as in some cases slightly compromising on trucking cost may drastically decrease the probable health risk and/or traffic difficulties. This will not only be rewarding to the community by making cities safer places to live, but also can be beneficial to shipping companies by allowing them to advertise as environmental friendly conveyors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluvial sediment transport is controlled by hydraulics, sediment properties and arrangement, and flow history across a range of time scales. This physical complexity has led to ambiguous definition of the reference frame (Lagrangian or Eulerian) in which sediment transport is analysed. A general Eulerian-Lagrangian approach accounts for inertial characteristics of particles in a Lagrangian (particle fixed) frame, and for the hydrodynamics in an independent Eulerian frame. The necessary Eulerian-Lagrangian transformations are simplified under the assumption of an ideal Inertial Measurement Unit (IMU), rigidly attached at the centre of the mass of a sediment particle. Real, commercially available IMU sensors can provide high frequency data on accelerations and angular velocities (hence forces and energy) experienced by grains during entrainment and motion, if adequately customized. IMUs are subjected to significant error accu- mulation but they can be used for statistical parametrisation of an Eulerian-Lagrangian model, for coarse sediment particles and over the temporal scale of individual entrainment events. In this thesis an Eulerian-Lagrangian model is introduced and evaluated experimentally. Absolute inertial accelerations were recorded at a 4 Hz frequency from a spherical instrumented particle (111 mm diameter and 2383 kg/m3 density) in a series of entrainment threshold experiments on a fixed idealised bed. The grain-top inertial acceleration entrainment threshold was approximated at 44 and 51 mg for slopes 0.026 and 0.037 respectively. The saddle inertial acceleration entrainment threshold was at 32 and 25 mg for slopes 0.044 and 0.057 respectively. For the evaluation of the complete Eulerian-Lagrangian model two prototype sensors are presented: an idealised (spherical) with a diameter of 90 mm and an ellipsoidal with axes 100, 70 and 30 mm. Both are instrumented with a complete IMU, capable of sampling 3D inertial accelerations and 3D angular velocities at 50 Hz. After signal analysis, the results can be used to parametrize sediment movement but they do not contain positional information. The two sensors (spherical and ellipsoidal) were tested in a series of entrainment experiments, similar to the evaluation of the 111 mm prototype, for a slope of 0.02. The spherical sensor entrained at discharges of 24.8 ± 1.8 l/s while the same threshold for the ellipsoidal sensor was 45.2 ± 2.2 l/s. Kinetic energy calculations were used to quantify the particle-bed energy exchange under fluvial (discharge at 30 l/s) and non-fluvial conditions. All the experiments suggest that the effect of the inertial characteristics of coarse sediments on their motion is comparable to the effect hydrodynamic forces. The coupling of IMU sensors with advanced telemetric systems can lead to the tracking of Lagrangian particle trajectories, at a frequency and accuracy that will permit the testing of diffusion/dispersion models across the range of particle diameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cette thèse examine les impacts sur la morphologie des tributaires du fleuve Saint-Laurent des changements dans leur débit et leur niveau de base engendrés par les changements climatiques prévus pour la période 2010–2099. Les tributaires sélectionnés (rivières Batiscan, Richelieu, Saint-Maurice, Saint-François et Yamachiche) ont été choisis en raison de leurs différences de taille, de débit et de contexte morphologique. Non seulement ces tributaires subissent-ils un régime hydrologique modifié en raison des changements climatiques, mais leur niveau de base (niveau d’eau du fleuve Saint-Laurent) sera aussi affecté. Le modèle morphodynamique en une dimension (1D) SEDROUT, à l’origine développé pour des rivières graveleuses en mode d’aggradation, a été adapté pour le contexte spécifique des tributaires des basses-terres du Saint-Laurent afin de simuler des rivières sablonneuses avec un débit quotidien variable et des fluctuations du niveau d’eau à l’aval. Un module pour simuler le partage des sédiments autour d’îles a aussi été ajouté au modèle. Le modèle ainsi amélioré (SEDROUT4-M), qui a été testé à l’aide de simulations à petite échelle et avec les conditions actuelles d’écoulement et de transport de sédiments dans quatre tributaires du fleuve Saint-Laurent, peut maintenant simuler une gamme de problèmes morphodynamiques de rivières. Les changements d’élévation du lit et d’apport en sédiments au fleuve Saint-Laurent pour la période 2010–2099 ont été simulés avec SEDROUT4-M pour les rivières Batiscan, Richelieu et Saint-François pour toutes les combinaisons de sept régimes hydrologiques (conditions actuelles et celles prédites par trois modèles de climat globaux (MCG) et deux scénarios de gaz à effet de serre) et de trois scénarios de changements du niveau de base du fleuve Saint-Laurent (aucun changement, baisse graduelle, baisse abrupte). Les impacts sur l’apport de sédiments et l’élévation du lit diffèrent entre les MCG et semblent reliés au statut des cours d’eau (selon qu’ils soient en état d’aggradation, de dégradation ou d’équilibre), ce qui illustre l’importance d’examiner plusieurs rivières avec différents modèles climatiques afin d’établir des tendances dans les effets des changements climatiques. Malgré le fait que le débit journalier moyen et le débit annuel moyen demeurent près de leur valeur actuelle dans les trois scénarios de MCG, des changements importants dans les taux de transport de sédiments simulés pour chaque tributaire sont observés. Ceci est dû à l’impact important de fortes crues plus fréquentes dans un climat futur de même qu’à l’arrivée plus hâtive de la crue printanière, ce qui résulte en une variabilité accrue dans les taux de transport en charge de fond. Certaines complications avec l’approche de modélisation en 1D pour représenter la géométrie complexe des rivières Saint-Maurice et Saint-François suggèrent qu’une approche bi-dimensionnelle (2D) devrait être sérieusement considérée afin de simuler de façon plus exacte la répartition des débits aux bifurcations autour des îles. La rivière Saint-François est utilisée comme étude de cas pour le modèle 2D H2D2, qui performe bien d’un point de vue hydraulique, mais qui requiert des ajustements pour être en mesure de pleinement simuler les ajustements morphologiques des cours d’eau.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A great deal of work recently has focused on suspended and bedload sediment transport, driven primarily by interest in contaminant transfer. However, uncertainties regarding the role of storm events, macrophyte beds and interactions between the two phases of sediment still exist. This paper compares two study sites within the same catchment whose geology varies significantly. The differences in hydrology, suspended sediment (SS) transport and bed load transport that this causes are examined. In addition, a method to predict the mobilization of different size fractions of sediment during given flows is investigated using critical entrainment thresholds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A robust and reliable risk assessment procedure for hydrologic hazards deserves particular attention to the role of transported woody material during flash floods or debris flows. At present, woody material transport phenomena are not systematically considered within the procedures for the elaboration of hazard maps. The consequence is a risk of losing prediction accuracy and of underestimating hazard impacts. Transported woody material frequently interferes with the sediment regulation capacity of open check dams and moreover, when obstruction phenomena at critical crosssections of the stream occur, inundations can be triggered. The paper presents a procedure for the determination of the relative propensity of mountain streams to the entrainment and delivery of recruited woody material on the basis of empirical indicators. The procedure provided the basis for the elaboration of a hazard index map for all torrent catchments of the Autonomous Province of Bolzano/Bozen. The plausibility of the results has been thoroughly checked by a backward oriented analysis on natural hazard events, documented since 1998 at the Department of Hydraulic Engineering of the aforementioned Alpine Province. The procedure provides hints for the consideration of the effects, induced by woody material transport, during the elaboration of hazard zone maps.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Arteries are heterogeneous, composite structures that undergo large cyclic deformations during blood transport. Presence, build-up and consequent rupture of blockages in blood vessels, called atherosclerotic plaques, lead to disruption in the blood flow that can eventually be fatal. Abnormal lipid profile and hypertension are the main risk factors for plaque progression. Treatments span from pharmacological methods, to minimally invasive balloon angioplasty and stent procedures, and finally to surgical alternatives. There is a need to understand arterial disease progression and devise methods to detect, control, treat and manage arterial disease through early intervention. Local delivery through drug eluting stents also provide an attractive option for maintaining vessel integrity and restoring blood flow while releasing controlled amount of drug to reduce and alleviate symptoms. Development of drug eluting stents is hence interesting albeit challenging because it requires an integration of knowledge of mechanical properties with material transport of drug through the arterial wall to produce a desired biochemical effect. Although experimental models are useful in studying such complex multivariate phenomena, numerical models of mass transport in the vessel have proved immensely useful to understand and delineate complex interactions between chemical species, physical parameters and biological variables. The goals of this review are to summarize literature based on studies of mass transport involving low density lipoproteins in the arterial wall. We also discuss numerical models of drug elution from stents in layered and porous arterial walls that provide a unique platform that can be exploited for the design of novel drug eluting stents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As part of a study of the wear of candidate heat exchanger tube materials for use in fluidized bed combustors, two similar laboratory-scale rigs have been built and characterized. Specimens of selected alloys are carried on counter-rotating rotors immersed in a fluidized bed, and are exposed to particle impact velocities of up to approximately 3 ms-1 at temperatures up to 1000°C. The performance of this design of apparatus has been investigated in detail. The effects of several experimental variables have been studied, including angle of particle impact, specimen speed, position of the rotor within the fluidized bed, duration of exposure, bed material particle size, degradation of the bed material, degree of fluidization of the bed, and size of specimen. In many cases the results obtained with steel specimens at elevated temperatures are similar to those observed with polymeric specimens at low temperatures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sand storm is a serious environmental threat to humans. Sand particles are transported by saltation and suspension, causing soil erosion in one place and deposition in another. In order to prevent and predict sand storms, the causes and the manners of particle motions must be studied in detail. In this paper a standard k-epsilon model is used for the gas phase simulation and the discrete element method (DEM) is used to predict the movements of particles using an in-house procedure. The data are summarized in an Eulerian-Eulerian regime after simulation to get the statistical particle Reynolds stress and particle collision stress. The results show that for the current case the Reynolds stress and the air shear stress predominate in the region 20-250 mm above the initial sand bed surface. However, in the region below 3 mm, the collision stress must be taken into account in predicting particle movement. (C) 2010 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis presented here unveils an experimental study of the hydrodynamic characteristics of swirling fluidized bed viz. pressure drop across the distributor and the bed, minimum fluidizing velocity, bed behaviour and angle of air injection. In swirling fluidized bed the air is admitted to the bed at an angle 'Ѳ' to the horizontal. The vertical component of the velocity v sin Ѳ causes fluidization and the horizontal component v cos Ѳ contributes to swirl motion of the bed material.The study was conducted using spherical particles having sizes 3.2 mm, 5.5 mm & 7.4 mm as the bed materials. Each of these particles was made from high density polyethylene, nylon and acetal having relative densities of 0.93, 1.05 and 1.47 respectively.The experiments were conducted using conidour type distributors having four rows of slits. Altogether four distributors having angles of air injection (Φ)- 0°, 5°, 10° & 15° were designed and fabricated for the study. The total number of slits in each distributor was 144. The area of opening was 6220 mm2 making the percentage area of opening to 9.17. But the percentage useful area of opening of the distributor was 96.The experiments on the variation of distributor pressure drop with superficial velocity revealed that the distributor pressure drop decreases with angle of air injection. Investigations related to bed hydrodynamics were conducted using 2.5 kg of bed material. The bed pressure drop measurements were made along the radial direction of the distributor at distances of 60 mm, 90 mm, 120 mm & 150 mm from the centre of the distributor. It was noticed that after attaining minimum fluidizing velocity, the bed pressure drop increases along the radial direction of the distributor. But at a radial distance of 90 mm from the distributor centre, after attaining minimum fluidizing velocity the bed pressure drop remains almost constant. It was also observed that the bed pressure drop varies inversely with particle size as well as particle density.An attempt was made to determine the effect of various parameters on minimum fluidizing velocity. It was noticed that the minimum fluidizing velocity varies directly with angle of air injection (Φ), particle size and particle density.The study on the bed behaviour showed that the superficial velocity required for initiating various bed phenomena (such as swirl motion and separation of particles from the cone at the centre) increase with increase in particle size as well as particle density. It was also observed that the particle size and particle density directly influence the superficial velocity required for various regimes of bed behaviour such as linear variation of bed pressure drop, constant bed pressure drop and sudden increase or decrease in bed pressure drop.Experiments were also performed to study the effect of angle of air injection (Φ). It was noticed that the bed pressure drop decreases with angle of air injection. It was also noticed that the angle of air injection directly influence the superficial velocity required for initiating various bed phenomena as well as the various regimes of bed behaviour.