1000 resultados para Bed dip


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bedding dips in the CRP-2A drillhole were determined in two ways (1) analysis of a dipmeter log, and (2) identification of bed boundaries on digital images of the outer core surface. The two methods document the downhole increase in structural dip, to a maximum of 15° in the lowest 150 m of the hole. Dipmeter data, which are azimuthally oriented, indicate a 75° azimuth for structural tilting, in agreement with seismic reflection profiles. Core and log dips indicate that structural dip increases by 5-7° between 325 and 480 mbsf. Both, however, also exhibit high dip inhomogeneity because of depositional (e.g., cross bedding) and post-depositional (e.g., softsediment deformation) processes. This variability adds ambiguity to the search for angular unconformities within the CRP-2A drillhole. Dip directions of different lithologies are generally similar, as are dip directions for the four kinds of systems tracts. Downdip azimuths of sands and muds are slightly different from those of diamicts, possibly reflecting the divergence between ENE offshore dip and ESE glacial advance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bedding dips in the CRP-3 drillhole were determined in three ways: (1) analysis of a dipmeter log, (2) identification of bed boundaries on borehole televiewer log images, and (3) identification of bed boundaries on digital images of the outer surfaces of oriented cores. All three methods determine both dip magnitude and downdip azimuth of bedding. Dipmeter results document variations in bedding dip throughout the logged interval (20-902 mbsf), whereas core and televiewer results are available at present only for selected depth intervals. Dipmeter data indicate that structural dip is remarkably constant, at 21° dip to azimuth 65°, throughout the Tertiary shelf section, except for the top 100 m where dips appear to be 5-10° shallower. This pattern, in conjunction with the systematically increasing dips throughout CRP-2A, suggests that the growth faulting active during CRP-2A deposition began during the final period of deposition at CRP-3. Normal faults at 260 and 539 mbsf in CRP-3 exhibit neither drag (localized dip steepening) nor significant changes in structural dip across them. Oriented core and televiewer analyses, covering a total of 200 m in the interval 400-900 mbsf, indicate bedding patterns that confirm the dipmeter results. The doleritic breccia at the base of the Tertiary section has steeper dips than overlying structural dips, possibly indicating a sedimentary dip to ENE in these fan sediments. Dip directions in the underlying Devonian Beacon sandstone are surprisingly similar to those in the overlying Tertiary section. Superimposed on the average Beacon dip of 22° to the ENE are localized tilts of up to 20°, probably caused by Tertiary fracturing and brecciation rather than original sedimentary dip variations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fifteen lengths of Leg 59 cores (primarily from Hole 451 as well as from Holes 447A and 448A) exhibiting macroscopic faults were selected by Dr. R. B. Scott (Co-Chief Scientist, Leg 59) to help us initiate this petrofabric analysis. We proposed to (1) determine what dynamically useful deformation features might be associated with the faults, and (2) infer from these features as much as possible about the physical environment of the deformation (effective pressure, differential stress, temperature, and strain rate), the orientation and relatively magnitudes of the principal stresses at the time of deformation, and the degree of induration of the rocks at the time of deformation. The cores, mainly from Hole 451, had been slabbed on board ship with respect to the trace of bedding so that each cut surface contains the true bedding dip-direction. In general, the cores from Hole 451 are largely calcareous, lithic and vitric, brecciated tuffs, whereas those from Holes 447A and 448A are basalts or basalt breccias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents-Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80-100 ka, with a mean of 88 +/- 3 ka. This implies that that the Barents-Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei-Harmon-Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents-Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The results of paleomagnetic studies of samples from DSDP Leg 78A are reported. For Site 541, the interval from 60 to 200 m sub-bottom was correlated with the Matuyama through Gilbert polarity epochs. For Site 543, the interval from 150 to 190 m sub-bottom was correlated with marine magnetic Anomalies 5C through 5E. Down-dip directions of tilted beds inferred from declination values for Sites 541 and 542 suggest a pattern of monoclinal folding. Results from basalt samples are comparable to those from other DSDP sites in relatively old basalts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During Ocean Drilling Program Legs 152 and 163, we recovered core from the offshore East Greenland volcanic province. The basaltic core recovered included a set of structural elements reflecting the history of extrusion, cooling, postdeposition alteration, and minor tectonism. Brittle features in the basaltic core include faults and several generations of veins. Several minicore samples from the lower sections of core from Hole 917A were taken for paleomagnetic analysis, primarily to test whether there were any significant postdepositional tectonic rotations or whether the core could be reoriented using paleomagnetic techniques. The characteristic magnetization direction was used to estimate the in situ orientation of measured structural features within the core. Although significant uncertainty is associated with the analysis, the corrected attitudes of veins in basalt at Site 917 dip moderately west, with a smaller, conjugate group of veins dipping moderately east-southeast, parallel to other seaward-dipping faults in the area, which were interpreted from seismic lines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The geometry of the Tonga Arc implies that it has rotated approximately 17° clockwise away from the Lau Ridge as the Lau Basin formed in between. Questions have arisen about the timing of the opening, whether the arc behaved rigidly, and whether the opening occurred instead from motion of the Lau Ridge, the remanent arc. We undertook to address these questions by taking paleomagnetic samples from sediment cores drilled on the Tonga Arc at Sites 840 and 841, orienting the samples in azimuth, and comparing the paleodeclinations to expected directions. Advanced hydraulic piston corer (APC) cores from Holes 840C and 841A were oriented during drilling with a tool based on a magnetic compass and attached to the core barrel. Samples from Hole 841B were drilled with a rotary core barrel (RCB) and therefore are azimuthally unoriented. They were oriented by identifying faults and dipping beds in the core and aligning them with the same features in the Formation MicroScanner (FMS) wireline logs, which were themselves oriented with a three-axis magnetometer in the FMS tool. The best results came from the APC cores, which yielded a mean pole at -69.0°S, 112.2°E for an age of 4 Ma. This pole implies a declination anomaly of 20.8° ± 12.6° (95% confidence limit), which appears to have occurred by tectonic rotation of the Tonga Arc. This value is almost exactly that expected from the geometry of the arc and implies that it did indeed rotate clockwise as a rigid body. The large uncertainty in azimuth results from core orientation errors, which have an average standard deviation of 18.6°. The youngest cores used to calculate the APC pole contain sediments deposited during Subchron 2A (2.48-3.40 Ma), and their declinations are indistinguishable from the others. This observation suggests that most of the rotation occurred after their deposition; this conclusion must be treated with caution, however, because of the large azimuthal orientation errors. Poles from late and early Miocene sediments of Hole 841B are more difficult to interpret. Samples from this hole are mostly normal in polarity, fail a reversal test, and yield poles that suggest that the normal-polarity directions may be a recent overprint. Late Miocene reversed-polarity samples may be unaffected by this overprint; if so, they imply a declination anomaly of 51.1° ± 11.5°. This observation may indicate that, for older sediments, Tonga forearc rotations are larger than expected.