32 resultados para Beanspruchung
Resumo:
Trotz einer zunehmenden Relevanz psychischer Erkrankungen im Gesundheitssystem und einer bedeutenden psychosozialen Funktion der Arbeit gibt es bisher wenige Studien, die sich explizit einer Untersuchung des Zusammenhangs von psychischer Erkrankung und Arbeitsplatzproblemen widmen. Noch weniger Befunde gibt es zu einem Vergleich von klinischen und nicht-klinischen Personen bezüglich arbeitsrelevanter Faktoren. In der hier vorliegenden Studie erfolgte erstmals eine Überprüfung der Karasek-Modelle gleichzeitig an klinischen und nicht-klinischen Personen. Insgesamt nahmen 160 Personen an der Studie teil, jeweils 40 befanden sich in stationärer bzw. ambulanter psychotherapeutischer Behandlung; zu all diesen Personen wurden insgesamt 80 nicht-klinische Personen untersucht, die der Patientenstichprobe in Beruf, Geschlecht und Alter glichen. Alle Personen gaben Auskunft per Fragebogen und berichteten in einem etwa einstündigen Interview von Stressoren und Ressourcen am Arbeitsplatz. Diese Untersuchung ergab, dass sich die Arbeitsplatzprobleme klinischer Personen in der Qualität nicht von denen nicht-klinischer Personen unterschieden, jedoch berichteten klinische Personen eine höhere Anzahl an Arbeitsplatzproblemen. Die positiven Faktoren am Arbeitsplatz unterschieden sich weder qualitativ noch quantitativ zwischen klinischen und nicht-klinischen Personen. Die klinischen Personen setzten häufiger ungünstige Stressverarbeitungsstrategien ein und zeigten teilweise einen ungünstigeren Umgang mit der Arbeit. In der Gesamtstichprobe gelang eine Bestätigung des Job-Demand-Control-Modells sowie des Job-Demand-Control-Support-Modells (ohne Interaktionseffekte); Personen mit geringer Kontrolle, hohen Anforderungen und geringer sozialer Unterstützung am Arbeitsplatz wiesen die höchsten Erschöpfungswerte auf (38.8% der Varianz der Erschöpfungswerte konnte so erklärt werden). Innerhalb der klinischen Stichprobe und bei Personen mit hoher Internalität erbrachten die Modelle höhere Vorhersageleistungen, mögliche Ursachen werden diskutiert. Die Ergebnisse dieser Arbeit gehen über bisherige Befunde hinaus. Sie unterstreichen die Wichtigkeit der Berücksichtigung arbeitsrelevanter Faktoren in der Psychotherapie und unterstützen die aktuelle Entwicklung der zunehmenden gesundheitsrelevanten Hilfsangebote für Arbeitnehmer (z.B. Coaching-Sitzungen) in großen Unternehmen.
Resumo:
Darstellung eines Belastungsmodells sowie einer FEM-Analyse der Spannungsverteilung in seitenbeweglichen Gleitketten beim Durchlaufen räumlicher Förderstrecken. Beschreibung der Ergebnisse von Messungen des Zugkraftverlaufs unter Variation belastungsrelevanter Parameter. Herleitung genauerer Gleichungen für die Kettenzugkraft in Gleitbögen und deren Abgleich mit gemessenen Kraftverläufen.
Resumo:
Illegitime Aufgaben sind Bestandteil des „Stress-as-Offense-to-Self“-Konzepts, das an der Universität Bern entwickelt wurde. Es geht von der Annahme aus, dass viele Situationen vor allem dadurch Stress auslösen, dass sie Ausdruck mangelnder Wertschätzung sind und damit den Selbstwert bedrohen. Illegitime Aufgaben sind definiert als Aufgaben, die man von einer Person eigentlich nicht erwarten kann; das kann daran liegen, dass sie als vermeidbar – und damit als unnötig – empfunden werden, oder daran, dass sie der beruflichen Kernrolle nicht entsprechen und deshalb als unzumutbar empfunden werden. Das Kapitel beschreibt die Merkmale von illegitimen Aufgaben, ordnet sie in die bisherige Forschung ein und grenzt sie von anderen, bereits bestehenden Konzepten ab. Zum anderen wird über erste Forschungsergebnisse berichtet, die die Tragfähigkeit des Konzepts zeigen. Das Kapitel endet mit der Diskussion weiterer Forschungsnotwendigkeiten (zum Beispiel im Hinblick auf interindividuelle Unterschiede) sowie praktischer Implikationen (zum Beispiel im Hinblick auf die Schulung von Führungskräften im Erkennen von und im Umgang mit illegitimen Aufgaben).
Resumo:
Rezension von: Martin Rothland (Hrsg.): Belastung und Beanspruchung im Lehrerberuf. Modelle, Befunde, Interventionen 2. überarbeitete Auflage. Wiesbaden: Springer VS 2013 (286 S.; ISBN 978-3-5311-8246-9)
Resumo:
Die Funktion eines Gebäudes, seine flächenmäßige Ausdehnung und seine Gliederung sowie seine Einbettung in die Umgebung bestimmen letztendlich die Dachkonstruktion. Der Planer steht hierbei vor der Aufgabe, unter Beachtung aller bauphysikalischen wie bautechnischen Gegebenheiten ein Optimum an gestalterischer Qualität bei Respektierung wirtschaftlicher und baupraktischer Belange zu realisieren, wobei zu beachten ist, dass gerade das Dach von den die Gebäudehülle bildenden Bauteilen der größten und unmittelbarsten Beanspruchung unterliegt.
Resumo:
In der Praxis kommt es bei der spanenden Bearbeitung immer wieder zu großen Standwegunterschieden identischer Werkzeuge bei vordergründig identischen Bearbeitungsrandbedingungen. Insbesondere bei Fertigungsschritten, die das Bohren als Vorbearbeitung erfordern, kommt es gelegentlich zu atypischen Verschleißerscheinungen, die auf das Entstehen einer Neuhärtezone an der Werkstückoberfläche beim Bohren zurückgeführt werden. Grundsätzlich sind Randzonenveränderungen eine Folge der mechanischen und thermischen Beanspruchung bei der Bearbeitung. Beim Eindringen des Schneidkeils kommt es zu Kornverzerrungen, welche die Werkstückhärte bis in eine Tiefe von 40 bis 80 µm erhöhen können. Überdies wird die Randzone des Werkstücks durch den Bearbeitungsvorgang und den Spantransport erhitzt und durch den Kühlschmierstoff bzw. die so genannte Selbstabschreckung im Anschluss sehr schnell abgekühlt. So kann es in Abhängigkeit der Randbedingungen zu Gefügeänderungen mit härtesteigernder (Sekundärabschreckung) oder härtemindernder (Anlasseffekte) Wirkung kommen. Nicht zuletzt beeinflussen beide Beanspruchungsarten auch das Ausmaß der Eigenspannungen in der Werkstückoberfläche. In dieser Arbeit werden die beim Kernlochbohren erzeugten Randzonenveränderungen sowie die Standzeit von Folgebearbeitungswerkzeugen, wie Gewindebohrern und Gewindeformern, und deren Abhängigkeit vom Verschleißzustand des Kernlochbohrers untersucht. Weiterhin werden mit Hilfe einer Energiebilanz die Anteile herausgefiltert, die primär die Eigenschaften der Bohrungsrandzone beeinflussen. Dies geschieht mit Hilfe einer mathematischen Modellierung des Bohrprozesses, in der die Einflüsse der Schneidkantengeometrie, der Schneidkantenverrundung, der Schneidkantenfase sowie des Freiflächenverschleißes berücksichtigt werden.
Resumo:
Das Werkstoffverhalten von stahlfaserfreiem bzw. stahlfaserverstärktem Stahlbeton unter biaxialle Druck- Zugbeanspruchung wurde experimentell und theoretisch untersucht. Die Basis der experimentellen Untersuchungen waren zahlreiche Versuche, die in der Vergangenheit an faserfreiem Stahlbetonscheiben zur Bestimmung des Werkstoffverhaltens von gerissenem Stahlbeton im ebenen Spannungszustand durchgeführt wurden. Bei diesen Untersuchungen wurde festgestellt, dass infolge einer Querzugbeanspruchung eine Abminderung der biaxialen Druckfestigkeit entsteht. Unter Berücksichtigung dieser Erkenntnisse sind zur Verbesserung der Werkstoffeigenschaften des Betons, Stahlbetonscheiben aus stahlfaserverstärktem Beton hergestellt worden. Die aus der Literatur bekannten Werkstoffmodelle für Beton sowie Stahlbeton, im ungerissenen und gerissenen Zustand wurden hinsichtlich der in der Vergangenheit ermittelten Materialeigenschaften des Betons bzw. Stahlbetons unter proportionalen sowie nichtproportionalen äußeren Belastungen erklärt und kritisch untersucht. In den frischen Beton wurden Stahlfasern hinzugegeben. Dadurch konnte die Festigkeits- und die Materialsteifigkeitsabminderung infolge Rissbildung, die zur Schädigung des Verbundwerkstoffs Beton führt, reduziert werden. Man konnte sehen, dass der Druckfestigkeitsabminderungsfaktor und insbesondere die zur maximal aufnehmbaren Zylinderdruckfestigkeit gehörende Stauchung, durch Zugabe von Stahlfasern besser begrenzt wird. Die experimentelle Untersuchungen wurden an sechs faserfreien und sieben stahlfaserverstärkten Stahlbetonscheiben unter Druck-Zugbelastung zur Bestimmung des Verhaltens des gerissenen faserfreien und stahlfaserverstärkten Stahlbetons durchgeführt. Die aus eigenen Versuchen ermittelten Materialeigenschaften des Betons, des stahlfaserverstärkten Betons und Stahlbetons im gerissenen Zustand wurden dargelegt und diskutiert. Bei der Rissbildung des quasi- spröden Werkstoffs Beton und dem stahlfaserverstärkten Beton wurde neben dem plastischen Fließen, auch die Abnahme des Elastizitätsmoduls festgestellt. Die Abminderung der aufnehmbaren Festigkeit und der zugehörigen Verzerrung lässt sich nicht mit der klassischen Fließtheorie der Plastizität ohne Modifizierung des Verfestigungsgesetzes erfassen. Es wurden auf elasto-plastischen Werkstoffmodellen basierende konstitutive Beziehungen für den faserfreien sowie den stahlfaserverstärkten Beton vorgeschlagen. Darüber hinaus wurde in der vorliegenden Arbeit eine auf dem elasto-plastischen Werkstoffmodell basierende konstitutive Beziehung für Beton und den stahlfaser-verstärkten Beton im gerissenen Zustand formuliert. Die formulierten Werkstoffmodelle wurden mittels dem in einer modularen Form aufgebauten nichtlinearen Finite Elemente Programm DIANA zu numerischen Untersuchungen an ausgewählten experimentell untersuchten Flächentragwerken, wie scheibenartigen-, plattenartigen- und Schalentragwerken aus faserfreiem sowie stahlfaserverstärktem Beton verwendet. Das entwickelte elasto-plastische Modell ermöglichte durch eine modifizierte effektive Spannungs-Verzerrungs-Beziehung für das Verfestigungsmodell, nicht nur die Erfassung des plastischen Fließens sondern auch die Berücksichtigung der Schädigung der Elastizitätsmodule infolge Mikrorissen sowie Makrorissen im Hauptzugspannungs-Hauptdruckspannungs-Bereich. Es wurde bei den numerischen Untersuchungen zur Ermittlung des Last-Verformungsverhaltens von scheibenartigen, plattenartigen- und Schalentragwerken aus faserfreiem und stahlfaserverstärktem Stahlbeton, im Vergleich mit den aus Versuchen ermittelten Ergebnissen, eine gute Übereinstimmung festgestellt.
Resumo:
Die Forschungsarbeit beschäftigt sich schwerpunktmäßig mit der Ausbildung von Bodengewölben über punkt- und linienförmigen Auflagerungen und der Stabilisierung des Gewölbebereiches durch horizontale Bewehrungseinlagen aus Geokunststoffen. Während das Tragverhalten entsprechender Bodengewölbe unter ruhenden Belastungen bereits wissenschaftlich erforscht ist untersucht die Dissertation vornehmlich das Gewölbeverhalten unter nichtruhenden Belastungen. Da die Gewölbemodelle primär im Verkehrswegebau als geokunststoffbewehrte Erdschichten über Pfahlelementen (GEP) ausgeführt werden, ist für die Praxis die Untersuchung der Auswirkung einer nichtruhenden Belastung (Verkehrslast) von besonderer Bedeutung. Methodisch wurden umfangreiche großmaßstäbliche Modellversuche (Maßstab 1:3) zur Gewölbeausbildungen am Pfahlrasterausschnitt sowie am Dammquerschnitt mit Berücksichtigung der Böschungssituation vorgenommen. Die Modellversuche wurden in einer differenzierten numerischen Analyse mit der Methode der finiten Elemente (FEM) verifiziert. Die zyklischen FEM-Modelle basierten dabei auf einem zyklisch-viskoplastischen Stoffansatz. Aufbauend auf den Modellversuchsergebnissen wurden schließlich modifizierte analytische Berechnungsansätze entwickelt. Zusammenfassend kann es bei zyklischen Beanspruchungen im unbewehrten System zu einer Gewölberückbildung und zu erhöhten Systemverformungen kommen. Die Größe der Gewölberückbildung ist abhängig von der Überdeckungshöhe, der Belastungsfrequenz, der Lastzyklenzahl sowie der zyklischen Belastungsamplitude in Relation zur statischen Überlagerungsspannung. Mit abnehmender Höhe, zunehmender Frequenz, zunehmender Zyklenzahl und Belastungsamplitude tritt eine Gewölbereduktion verstärkt ein. Eine erhöhte Primärspannung kann dazu führen, dass die Bodengewölbe überdrückt werden und dadurch gegenüber zyklischer Beanspruchung stabiler sind. Auch bei Anordnung von Bewehrungslagen sind ähnliche Effekte zu beobachten wie im unbewehrten Fall. Mit zunehmender zyklischer Beanspruchung behindern die eingebauten Geokunststoffe allerdings die Ausbildung der Scherfugen, reduzieren dadurch die Setzungen, erhöhen die Lastumlagerung auf die Pfähle und stabilisieren dadurch das System. Aus den Modellversuchen wurde ein vereinfachter Ansatz für die vorhandenen analytischen Berechnungsverfahren in Form eines Gewölbereduktionsfaktors k abgeleitet, mit dem näherungsweise auch für praktische Fälle eine erste Abschätzung der Gewölbereduktion infolge nichtruhender Belastung möglich ist. Ergänzend zu dem Hauptthema der Gewölbeausbildung unter nichtruhenden Lasten unter-sucht die Forschungsarbeit die allgemeine Verwendbarkeit der FEM-Methode zur Berechnung eines GEP-Systems unter ruhender und nichtruhender Belastung, beurteilt die derzeit gültigen Spreizdruckansätze sowie den derzeitigen Verankerungsnachweis für eingelegte Geokunststofflagen und untersucht die Lastabtragung im Geogitter bei dreieckrasterförmiger Lagerung.
Resumo:
Die technischen Oberflächen werden oft als Bauteilversagungsorte definiert. Deswegen ist eine optimale Ausnutzung der Werkstoffeigenschaften ohne mechanische Oberflächenbehandlungsverfahren nicht mehr wegzudenken. Mechanische Randschichtoptimierungsverfahren sind vergleichsweise einfach, Kosten sparend und hocheffektiv. Gerade das Festwalzen wird wegen seiner günstigen Auswirkungen wie die exzellente Oberflächengüte, die hohen Druckeigenspannungen sowie die hohe Oberflächenverfestigung zunehmend an Bedeutung gewinnen. Außerdem wird durch das Festwalzen in einigen Legierungen eine nanokristalline Oberflächenschicht gebildet. Diese brillanten Eigenschaften führen nach einer mechanischen Oberflächenbehandlung zur Erhöhung des Werkstoffwiderstandes unter anderem gegen Verschleiß, Spannungsrisskorrosion und insbesondere zur Steigerung der Schwingfestigkeit. Ein etabliertes Beispiel zur Steigerung der Schwingfestigkeit ist das Festwalzen von Achsen und Kurbelwellen. Auch solche komplexen Komponenten wie Turbinenschaufeln werden zur Schwingfestigkeitssteigerung laserschockverfestigt oder festgewalzt. Die Laserschockverfestigung ist ein relativ neues Verfahren auf dem Gebiet der mechanischen Oberflächenbehandlungen, das z.B. bereits in der Flugturbinenindustrie Anwendung fand und zur Schwingfestigkeitsverbesserung beiträgt. Das Verfahrensprinzip besteht darin, dass ein kurzer Laserimpuls auf die zu verfestigende, mit einer Opferschicht versehene Materialoberfläche fokussiert wird. Das Auftreffen des Laserimpulses auf der verwendeten Opferschicht erzeugt ein expandierendes Plasma, welches eine Schockwelle in randnahen Werkstoffbereichen erzeugt, die elastisch-plastische Verformungen bewirkt. Eine konsekutive Wärmebehandlung, Auslagerung nach dem Festwalzen, nutzt den statischen Reckalterungseffekt. Hierdurch werden die Mikrostrukturen stabilisiert. Die Änderung der Mikrostrukturen kann jedoch zu einer beträchtlichen Abnahme der mittels Festwalzen entstandenen Druckeigenspannungen und der Kaltverfestigungsrate führen. Das Festwalzen bei erhöhter Temperatur bietet eine weitere Möglichkeit die Schwingfestigkeit von metallischen Werkstoffen zu verbessern. Die Mikrostruktur wird durch den Effekt der dynamischen Reckalterung stabilisiert. Die Effekte beim Festwalzen bei erhöhten Temperaturen sind ähnlich dem Warmstrahlen. Das Festwalzen erzeugt Oberflächenschichten mit sehr stabilen Kaltverfestigungen und Druckeigenspannungen. Diese Strukturen haben viele Vorteile im Vergleich zu den durch rein mechanische Verfahren erzeugten Strukturen in Bezug auf die Schwingfestigkeit und die Stabilität der Eigenspannungen. Die Aufgabe der vorliegenden Dissertation war es, Verfahren zur Verbesserung der Schwingfestigkeit im Temperaturbereich zwischen Raumtemperatur und 600 °C zu erforschen. Begleitende mikrostrukturelle sowie röntgenographische Untersuchungen sollen zum Verständnis der Ursachen der Verbesserung beitragen. Für diese Arbeit wurde der in der Praxis häufig verwendete Modellwerkstoff X5CrNi18-10 ausgewählt. Als Randschichtverfestigungsverfahren wurden das Festwalzen, eine Kombination der mechanischen und thermischen, thermomechanischen Verfahren auf der Basis des Festwalzens und eine Laserschockverfestigung verwendet.
Resumo:
Bei Dämmen auf wenig tragfähigem Untergrund ist es zwischenzeitlich Stand der Technik, an der Dammbasis eine Bewehrung aus hochzugfesten Geokunststoffen (Gewebe oder Geogitter) einzulegen. Dabei können die Bewehrungslagen direkt auf den weichen Boden oder über Pfahlelementen angeordnet werden, die die Dammlasten in tiefere, tragfähigere Schichten abtragen. Die horizontale Bewehrung an der Dammbasis hat die Aufgabe, die vertikalen Dammlasten und die nach außen wirkenden Spreizkräfte aufzunehmen. Dies ist besonders für bewehrte Tragschichten über Pfählen von großer Bedeutung, da sonst die Pfähle/Säulen eine Biegebeanspruchung erhalten, die sie aufgrund des geringen Durchmessers (oftmals unbewehrt) nicht aufnehmen können. Abgesicherte wissenschaftliche Erkenntnisse über Größe und Verteilung der Spreizspannung in Höhe ober- und unterhalb der Bewehrungslagen liegen derzeit noch nicht vor, aus denen dann auch die Beanspruchung abzuleiten ist, die aus der Spreizwirkung bei der Geokunststoffbemessung zu berücksichtigen ist. Herr Dr.-Ing. Gourge Fahmi hat dafür zunächst den Kenntnisstand zur Spreizbeanspruchung ohne und mit Bewehrung sowie ohne und mit Pfahlelementen zusammengefasst. Ein wesentlicher Teil einer wissenschaftlichen Untersuchungen stellt die Modellversuche in einem relativ großen Maßstab dar, die u. a. auch zur Validierung von numerischen Berechnungen zur Fragestellung vorgesehen waren. Dabei konnte nach gewissen Parameteranpassungen überwiegend eine gute Übereinstimmung zwischen Modellversuchen und FEM-Berechnungen erreicht werden. Lediglich bei den Dehnungen bzw. Zugkräften in den Geogittern über Pfahlelementen ergab die FEM bei dem verwendeten Programmsystem viel zu niedrige Werte. Es wurde dazu in der Arbeit anhand eigener Untersuchungen und Vergleichsergebnissen aus der Literatur eine Hypothese formuliert und zunächst die Berechnungsergebnisse mit einem Faktor angepasst. Mit den durchgeführten Verifikationen stand damit dann ein weitestgehend abgesichertes numerisches Berechnungsmodell zur Verfügung. Aufbauend auf diesen Vorarbeiten konnten Parameterstudien mit numerischen und analytischen Methoden zur Spreizproblematik durchgeführt werden. Dabei wurden die Randbedingungen und Parametervariationen sinnvoll und für die Fragestellung zutreffend gewählt. Die numerischen Verfahren ergaben vertiefte Erkenntnisse zur Mechanik und zum Verhalten der Konstruktion. Die analytischen Vergleichsberechnungen validierten primär die Güte dieser vereinfachten Ansätze für praktische Berechnungen. Zusammenfassend wurde festgestellt, dass erwartungsgemäß die Spreizkräfte im Geogitter nahezu linear mit der Dammhöhe anwachsen. Von besonderer Bedeutung für die Größe der Spreizkräfte ist die Steifigkeit der Weichschichten. Dieser Parameter wird bei den bisher bekannten analytischen Berechnungsverfahren nicht berücksichtigt. Je weicher der Untergrund, je größer wird das Verhältnis zwischen Spreiz- und Membranbeanspruchung. Eine steilere Dammböschung hat erwartungsgemäß ebenfalls eine höhere Spreizwirkung zur Folge. Des Weiteren ergeben sich bei mehrlagigen Geogittern die höheren Beanspruchungen in der unteren Lage aus dem Membraneffekt und in der oberen Lage aus dem Spreizeffekt. Zu diesen Erkenntnissen wurden in der Arbeit erste Vorschläge für die praktischen Bemessungen gemacht, die aber noch weiter zu optimieren sind. Schließlich erfolgt von Herrn Fahmi eine Betrachtung der Pfahlelementbeanspruchung aus Pfahlkopfverschiebung und Biegemomenten. Dabei wurde ersichtlich, dass die Pfahlelemente bei hohen Dämmen erhebliche Beanspruchungen erhalten können, wenn relativ weicher Untergrund vorhanden ist, und es zeigt die Notwendigkeit entsprechend abgesicherter Bemessungsverfahren auf.
Resumo:
Am Fachgebiet Massivbau (Institut für Konstruktiven Ingenieurbau – IKI) des Fachbereichs Bauingenieurwesen der Universität Kassel wurden Bauteilversuche an zweiaxial auf Druck-Zug belasteten, faserfreien und faserverstärkten Stahlbetonscheiben durchgeführt. Dabei wurden die Auswirkungen der Querzugbeanspruchung und der Rissbildung auf die Druckfestigkeit, auf die Stauchung bei Erreichen der Höchstlast sowie auf die Drucksteifigkeit des stabstahl- und faserbewehrten Betons an insgesamt 56 faserfreien und faserverstärkten Beton- und Stahlbetonscheiben untersucht. Auf der Grundlage der experimentell erhaltenen Ergebnisse wird ein Vorschlag zur Abminderung der Druckfestigkeit des gerissenen faserfreien und faserbewehrten Stahlbetons in Abhängigkeit der aufgebrachten Zugdehnung formuliert. Die Ergebnisse werden den in DIN 1045-1 [D4], Eurocode 2 [E3, E4], CEB-FIP Model Code 1990 [C1] und ACI Standard 318-05 [A1] angegebenen Bemessungsregeln für die Druckstrebenfestigkeit des gerissenen Stahlbetons gegenübergestellt und mit den Untersuchungen anderer Wissenschaftler verglichen. Die bekannten Widersprüche zwischen den Versuchsergebnissen, den vorgeschlagenen Modellen und den Regelwerken aus U.S.A., Kanada und Europa können dabei weitgehend aufgeklärt werden. Für nichtlineare Verfahren der Schnittgrößenermittlung und für Verformungsberechnungen wird ein Materialmodell des gerissenen faserfreien und faserbewehrten Stahlbetons abgeleitet. Hierzu wird die für einaxiale Beanspruchungszustände gültige Spannungs-Dehnungs-Linie nach Bild 22 der DIN 1045-1 auf den Fall der zweiaxialen Druck-Zug-Beanspruchung erweitert.