985 resultados para Bayesian techniques


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variant of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here two new extended frameworks are derived and presented that are based on basis function expansions and local polynomial approximations of a recently proposed variational Bayesian algorithm. It is shown that the new extensions converge to the original variational algorithm and can be used for state estimation (smoothing). However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new methods are numerically validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, for which the exact likelihood can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz '63 (3-dimensional model). The algorithms are also applied to the 40 dimensional stochastic Lorenz '96 system. In this investigation these new approaches are compared with a variety of other well known methods such as the ensemble Kalman filter / smoother, a hybrid Monte Carlo sampler, the dual unscented Kalman filter (for jointly estimating the systems states and model parameters) and full weak-constraint 4D-Var. Empirical analysis of their asymptotic behaviour as a function of observation density or length of time window increases is provided.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. RESULTS: Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. CONCLUSIONS: Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present five new cloud detection algorithms over land based on dynamic threshold or Bayesian techniques, applicable to the Advanced Along Track Scanning Radiometer (AATSR) instrument and compare these with the standard threshold based SADIST cloud detection scheme. We use a manually classified dataset as a reference to assess algorithm performance and quantify the impact of each cloud detection scheme on land surface temperature (LST) retrieval. The use of probabilistic Bayesian cloud detection methods improves algorithm true skill scores by 8-9 % over SADIST (maximum score of 77.93 % compared to 69.27 %). We present an assessment of the impact of imperfect cloud masking, in relation to the reference cloud mask, on the retrieved AATSR LST imposing a 2 K tolerance over a 3x3 pixel domain. We find an increase of 5-7 % in the observations falling within this tolerance when using Bayesian methods (maximum of 92.02 % compared to 85.69 %). We also demonstrate that the use of dynamic thresholds in the tests employed by SADIST can significantly improve performance, applicable to cloud-test data to provided by the Sea and Land Surface Temperature Radiometer (SLSTR) due to be launched on the Sentinel 3 mission (estimated 2014).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The rise of evidence-based medicine as well as important progress in statistical methods and computational power have led to a second birth of the >200-year-old Bayesian framework. The use of Bayesian techniques, in particular in the design and interpretation of clinical trials, offers several substantial advantages over the classical statistical approach. First, in contrast to classical statistics, Bayesian analysis allows a direct statement regarding the probability that a treatment was beneficial. Second, Bayesian statistics allow the researcher to incorporate any prior information in the analysis of the experimental results. Third, Bayesian methods can efficiently handle complex statistical models, which are suited for advanced clinical trial designs. Finally, Bayesian statistics encourage a thorough consideration and presentation of the assumptions underlying an analysis, which enables the reader to fully appraise the authors' conclusions. Both Bayesian and classical statistics have their respective strengths and limitations and should be viewed as being complementary to each other; we do not attempt to make a head-to-head comparison, as this is beyond the scope of the present review. Rather, the objective of the present article is to provide a nonmathematical, reader-friendly overview of the current practice of Bayesian statistics coupled with numerous intuitive examples from the field of oncology. It is hoped that this educational review will be a useful resource to the oncologist and result in a better understanding of the scope, strengths, and limitations of the Bayesian approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE To compare the effects of antiplatelets and anticoagulants on stroke and death in patients with acute cervical artery dissection. DESIGN Systematic review with Bayesian meta-analysis. DATA SOURCES The reviewers searched MEDLINE and EMBASE from inception to November 2012, checked reference lists, and contacted authors. STUDY SELECTION Studies were eligible if they were randomised, quasi-randomised or observational comparisons of antiplatelets and anticoagulants in patients with cervical artery dissection. DATA EXTRACTION Data were extracted by one reviewer and checked by another. Bayesian techniques were used to appropriately account for studies with scarce event data and imbalances in the size of comparison groups. DATA SYNTHESIS Thirty-seven studies (1991 patients) were included. We found no randomised trial. The primary analysis revealed a large treatment effect in favour of antiplatelets for preventing the primary composite outcome of ischaemic stroke, intracranial haemorrhage or death within the first 3 months after treatment initiation (relative risk 0.32, 95% credibility interval 0.12 to 0.63), while the degree of between-study heterogeneity was moderate (τ(2) = 0.18). In an analysis restricted to studies of higher methodological quality, the possible advantage of antiplatelets over anticoagulants was less obvious than in the main analysis (relative risk 0.73, 95% credibility interval 0.17 to 2.30). CONCLUSION In view of these results and the safety advantages, easier usage and lower cost of antiplatelets, we conclude that antiplatelets should be given precedence over anticoagulants as a first line treatment in patients with cervical artery dissection unless results of an adequately powered randomised trial suggest the opposite.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bayesian techniques have been developed over many years in a range of different fields, but have only recently been applied to the problem of learning in neural networks. As well as providing a consistent framework for statistical pattern recognition, the Bayesian approach offers a number of practical advantages including a potential solution to the problem of over-fitting. This chapter aims to provide an introductory overview of the application of Bayesian methods to neural networks. It assumes the reader is familiar with standard feed-forward network models and how to train them using conventional techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bayesian techniques have been developed over many years in a range of different fields, but have only recently been applied to the problem of learning in neural networks. As well as providing a consistent framework for statistical pattern recognition, the Bayesian approach offers a number of practical advantages including a potential solution to the problem of over-fitting. This chapter aims to provide an introductory overview of the application of Bayesian methods to neural networks. It assumes the reader is familiar with standard feed-forward network models and how to train them using conventional techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate a new method for extracting high-level scene information from the type of data available from simultaneous localisation and mapping systems. We model the scene with a collection of primitives (such as bounded planes), and make explicit use of both visible and occluded points in order to refine the model. Since our formulation allows for different kinds of primitives and an arbitrary number of each, we use Bayesian model evidence to compare very different models on an even footing. Additionally, by making use of Bayesian techniques we can also avoid explicitly finding the optimal assignment of map landmarks to primitives. The results show that explicit reasoning about occlusion improves model accuracy and yields models which are suitable for aiding data association. © 2011. The copyright of this document resides with its authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study focuses attention on defining certain measures of income inequality for the truncated distributions and characterization of probability distributions using the functional form of these measures, extension of some measures of inequality and stability to higher dimensions, characterization of bivariate models using the above concepts and estimation of some measures of inequality using the Bayesian techniques. The thesis defines certain measures of income inequality for the truncated distributions and studies the effect of truncation upon these measures. An important measure used in Reliability theory, to measure the stability of the component is the residual entropy function. This concept can advantageously used as a measure of inequality of truncated distributions. The geometric mean comes up as handy tool in the measurement of income inequality. The geometric vitality function being the geometric mean of the truncated random variable can be advantageously utilized to measure inequality of the truncated distributions. The study includes problem of estimation of the Lorenz curve, Gini-index and variance of logarithms for the Pareto distribution using Bayesian techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies into price transmission have recognized the important role played by transport and transaction costs. Threshold models are one approach to accommodate such costs. We develop a generalized Threshold Error Correction Model to test for the presence and form of threshold behavior in price transmission that is symmetric around equilibrium. We use monthly wheat, maize, and soya prices from the United States, Argentina, and Brazil to demonstrate this model. Classical estimation of these generalized models can present challenges but Bayesian techniques avoid many of these problems. Evidence for thresholds is found in three of the five commodity price pairs investigated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this paper is to revisit the von Liebig hypothesis by reexamining five samples of experimental data and by applying to it recent advances in Bayesian techniques. The samples were published by Hexem and Heady as described in a further section. Prior to outlining the estimation strategy, we discuss the intuition underlying our approach and, briefly, the literature on which it is based. We present an algorithm for the basic von Liebig formulation and demonstrate its application using simulated data (table 1). We then discuss the modifications needed to the basic model that facilitate estimation of a von Liebig frontier and we demonstrate the extended algorithm using simulated data (table 2). We then explore, empirically, the relationships between limiting water and nitrogen in the Hexem and Heady corn samples and compare the results between the two formulations (table 3). Finally, some conclusions and suggestions for further research are offered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pollination by bees and other animals increases the size, quality, or stability of harvests for 70% of leading global crops. Because native species pollinate many of these crops effectively, conserving habitats for wild pollinators within agricultural landscapes can help maintain pollination services. Using hierarchical Bayesian techniques, we synthesize the results of 23 studies - representing 16 crops on five continents - to estimate the general relationship between pollination services and distance from natural or semi-natural habitats. We find strong exponential declines in both pollinator richness and native visitation rate. Visitation rate declines more steeply, dropping to half of its maximum at 0.6 km from natural habitat, compared to 1.5 km for richness. Evidence of general decline in fruit and seed set - variables that directly affect yields - is less clear. Visitation rate drops more steeply in tropical compared with temperate regions, and slightly more steeply for social compared with solitary bees. Tropical crops pollinated primarily by social bees may therefore be most susceptible to pollination failure from habitat loss. Quantifying these general relationships can help predict consequences of land use change on pollinator communities and crop productivity, and can inform landscape conservation efforts that balance the needs of native species and people.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using mixed logit models to analyse choice data is common but requires ex ante specification of the functional forms of preference distributions. We make the case for greater use of bounded functional forms and propose the use of the Marginal Likelihood, calculated using Bayesian techniques, as a single measure of model performance across non nested mixed logit specifications. Using this measure leads to very different rankings of model specifications compared to alternative rule of thumb measures. The approach is illustrated using data from a choice experiment regarding GM food types which provides insights regarding the recent WTO dispute between the EU and the US, Canada and Argentina and whether labelling and trade regimes should be based on the production process or product composition.