885 resultados para Bayesian ridge regression
Resumo:
This paper addresses the investment decisions considering the presence of financial constraints of 373 large Brazilian firms from 1997 to 2004, using panel data. A Bayesian econometric model was used considering ridge regression for multicollinearity problems among the variables in the model. Prior distributions are assumed for the parameters, classifying the model into random or fixed effects. We used a Bayesian approach to estimate the parameters, considering normal and Student t distributions for the error and assumed that the initial values for the lagged dependent variable are not fixed, but generated by a random process. The recursive predictive density criterion was used for model comparisons. Twenty models were tested and the results indicated that multicollinearity does influence the value of the estimated parameters. Controlling for capital intensity, financial constraints are found to be more important for capital-intensive firms, probably due to their lower profitability indexes, higher fixed costs and higher degree of property diversification.
Resumo:
This paper addresses the investment decisions considering the presence of financial constraints of 373 large Brazilian firms from 1997 to 2004, using panel data. A Bayesian econometric model was used considering ridge regression for multicollinearity problems among the variables in the model. Prior distributions are assumed for the parameters, classifying the model into random or fixed effects. We used a Bayesian approach to estimate the parameters, considering normal and Student t distributions for the error and assumed that the initial values for the lagged dependent variable are not fixed, but generated by a random process. The recursive predictive density criterion was used for model comparisons. Twenty models were tested and the results indicated that multicollinearity does influence the value of the estimated parameters. Controlling for capital intensity, financial constraints are found to be more important for capital-intensive firms, probably due to their lower profitability indexes, higher fixed costs and higher degree of property diversification.
Resumo:
The purpose of this paper is to develop a Bayesian analysis for nonlinear regression models under scale mixtures of skew-normal distributions. This novel class of models provides a useful generalization of the symmetrical nonlinear regression models since the error distributions cover both skewness and heavy-tailed distributions such as the skew-t, skew-slash and the skew-contaminated normal distributions. The main advantage of these class of distributions is that they have a nice hierarchical representation that allows the implementation of Markov chain Monte Carlo (MCMC) methods to simulate samples from the joint posterior distribution. In order to examine the robust aspects of this flexible class, against outlying and influential observations, we present a Bayesian case deletion influence diagnostics based on the Kullback-Leibler divergence. Further, some discussions on the model selection criteria are given. The newly developed procedures are illustrated considering two simulations study, and a real data previously analyzed under normal and skew-normal nonlinear regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC) são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A large number of ridge regression estimators have been proposed and used with little knowledge of their true distributions. Because of this lack of knowledge, these estimators cannot be used to test hypotheses or to form confidence intervals.^ This paper presents a basic technique for deriving the exact distribution functions for a class of generalized ridge estimators. The technique is applied to five prominent generalized ridge estimators. Graphs of the resulting distribution functions are presented. The actual behavior of these estimators is found to be considerably different than the behavior which is generally assumed for ridge estimators.^ This paper also uses the derived distributions to examine the mean squared error properties of the estimators. A technique for developing confidence intervals based on the generalized ridge estimators is also presented. ^
Resumo:
One of the difficulties in the practical application of ridge regression is that, for a given data set, it is unknown whether a selected ridge estimator has smaller squared error than the least squares estimator. The concept of the improvement region is defined, and a technique is developed which obtains approximate confidence intervals for the value of ridge k which produces the maximum reduction in mean squared error. Two simulation experiments were conducted to investigate how accurate these approximate confidence intervals might be. ^
Resumo:
The cerebral cortex presents self-similarity in a proper interval of spatial scales, a property typical of natural objects exhibiting fractal geometry. Its complexity therefore can be characterized by the value of its fractal dimension (FD). In the computation of this metric, it has usually been employed a frequentist approach to probability, with point estimator methods yielding only the optimal values of the FD. In our study, we aimed at retrieving a more complete evaluation of the FD by utilizing a Bayesian model for the linear regression analysis of the box-counting algorithm. We used T1-weighted MRI data of 86 healthy subjects (age 44.2 ± 17.1 years, mean ± standard deviation, 48% males) in order to gain insights into the confidence of our measure and investigate the relationship between mean Bayesian FD and age. Our approach yielded a stronger and significant (P < .001) correlation between mean Bayesian FD and age as compared to the previous implementation. Thus, our results make us suppose that the Bayesian FD is a more truthful estimation for the fractal dimension of the cerebral cortex compared to the frequentist FD.
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
Approximate Bayesian computation (ABC) methods make use of comparisons between simulated and observed summary statistics to overcome the problem of computationally intractable likelihood functions. As the practical implementation of ABC requires computations based on vectors of summary statistics, rather than full data sets, a central question is how to derive low-dimensional summary statistics from the observed data with minimal loss of information. In this article we provide a comprehensive review and comparison of the performance of the principal methods of dimension reduction proposed in the ABC literature. The methods are split into three nonmutually exclusive classes consisting of best subset selection methods, projection techniques and regularization. In addition, we introduce two new methods of dimension reduction. The first is a best subset selection method based on Akaike and Bayesian information criteria, and the second uses ridge regression as a regularization procedure. We illustrate the performance of these dimension reduction techniques through the analysis of three challenging models and data sets.
Resumo:
We have considered a Bayesian approach for the nonlinear regression model by replacing the normal distribution on the error term by some skewed distributions, which account for both skewness and heavy tails or skewness alone. The type of data considered in this paper concerns repeated measurements taken in time on a set of individuals. Such multiple observations on the same individual generally produce serially correlated outcomes. Thus, additionally, our model does allow for a correlation between observations made from the same individual. We have illustrated the procedure using a data set to study the growth curves of a clinic measurement of a group of pregnant women from an obstetrics clinic in Santiago, Chile. Parameter estimation and prediction were carried out using appropriate posterior simulation schemes based in Markov Chain Monte Carlo methods. Besides the deviance information criterion (DIC) and the conditional predictive ordinate (CPO), we suggest the use of proper scoring rules based on the posterior predictive distribution for comparing models. For our data set, all these criteria chose the skew-t model as the best model for the errors. These DIC and CPO criteria are also validated, for the model proposed here, through a simulation study. As a conclusion of this study, the DIC criterion is not trustful for this kind of complex model.
Resumo:
We present the most comprehensive comparison to date of the predictive benefit of genetics in addition to currently used clinical variables, using genotype data for 33 single-nucleotide polymorphisms (SNPs) in 1,547 Caucasian men from the placebo arm of the REduction by DUtasteride of prostate Cancer Events (REDUCE®) trial. Moreover, we conducted a detailed comparison of three techniques for incorporating genetics into clinical risk prediction. The first method was a standard logistic regression model, which included separate terms for the clinical covariates and for each of the genetic markers. This approach ignores a substantial amount of external information concerning effect sizes for these Genome Wide Association Study (GWAS)-replicated SNPs. The second and third methods investigated two possible approaches to incorporating meta-analysed external SNP effect estimates - one via a weighted PCa 'risk' score based solely on the meta analysis estimates, and the other incorporating both the current and prior data via informative priors in a Bayesian logistic regression model. All methods demonstrated a slight improvement in predictive performance upon incorporation of genetics. The two methods that incorporated external information showed the greatest receiver-operating-characteristic AUCs increase from 0.61 to 0.64. The value of our methods comparison is likely to lie in observations of performance similarities, rather than difference, between three approaches of very different resource requirements. The two methods that included external information performed best, but only marginally despite substantial differences in complexity.
Resumo:
PURPOSE: According to estimations around 230 people die as a result of radon exposure in Switzerland. This public health concern makes reliable indoor radon prediction and mapping methods necessary in order to improve risk communication to the public. The aim of this study was to develop an automated method to classify lithological units according to their radon characteristics and to develop mapping and predictive tools in order to improve local radon prediction. METHOD: About 240 000 indoor radon concentration (IRC) measurements in about 150 000 buildings were available for our analysis. The automated classification of lithological units was based on k-medoids clustering via pair-wise Kolmogorov distances between IRC distributions of lithological units. For IRC mapping and prediction we used random forests and Bayesian additive regression trees (BART). RESULTS: The automated classification groups lithological units well in terms of their IRC characteristics. Especially the IRC differences in metamorphic rocks like gneiss are well revealed by this method. The maps produced by random forests soundly represent the regional difference of IRCs in Switzerland and improve the spatial detail compared to existing approaches. We could explain 33% of the variations in IRC data with random forests. Additionally, the influence of a variable evaluated by random forests shows that building characteristics are less important predictors for IRCs than spatial/geological influences. BART could explain 29% of IRC variability and produced maps that indicate the prediction uncertainty. CONCLUSION: Ensemble regression trees are a powerful tool to model and understand the multidimensional influences on IRCs. Automatic clustering of lithological units complements this method by facilitating the interpretation of radon properties of rock types. This study provides an important element for radon risk communication. Future approaches should consider taking into account further variables like soil gas radon measurements as well as more detailed geological information.
Resumo:
Les logiciels utilisés sont Splus et R.