980 resultados para Bayesian probability


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sediment sequence from Hasseldala port in southeastern Sweden provides a unique Lateglacial/early Holocene record that contains five different tephra layers. Three of these have been geochemically identified as the Borrobol Tephra, the Hasseldalen Tephra and the 10-ka Askja Tephra. Twenty-eight high-resolution C-14 measurements have been obtained and three different age models based on Bayesian statistics are employed to provide age estimates for the five different tephra layers. The chrono- and pollen stratigraphic framework supports the stratigraphic position of the Borrobol Tephra as found in Sweden at the very end of the Older Dryas pollen zone and provides the first age estimates for the Askja and Hasseldalen tephras. Our results, however, highlight the limitations that arise in attempting to establish a robust, chronologically independent lacustrine sequence that can be correlated in great detail to ice core or marine records. Radiocarbon samples are prone to error and sedimentation rates in lake basins may vary considerably due to a number of factors. Any type of valid and 'realistic' age model, therefore, has to take these limitations into account and needs to include this information in its prior assumptions. As a result, the age ranges for the specific horizons at Hasseldala port are large and calendar year estimates differ according to the assumptions of the age-model. Not only do these results provide a cautionary note for overdependence on one age-model for the derivation of age estimates for specific horizons, but they also demonstrate that precise correlations to other palaeoarchives to detect leads or lags is problematic. Given the uncertainties associated with establishing age-depth models for sedimentary sequences spanning the Lateglacial period, however, this exercise employing Bayesian probability methods represents the best possible approach and provides the most statistically significant age estimates for the pollen zone boundaries and tephra horizons. Copyright (C) 2006 John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Threshold estimation with sequential procedures is justifiable on the surmise that the index used in the so-called dynamic stopping rule has diagnostic value for identifying when an accurate estimate has been obtained. The performance of five types of Bayesian sequential procedure was compared here to that of an analogous fixed-length procedure. Indices for use in sequential procedures were: (1) the width of the Bayesian probability interval, (2) the posterior standard deviation, (3) the absolute change, (4) the average change, and (5) the number of sign fluctuations. A simulation study was carried out to evaluate which index renders estimates with less bias and smaller standard error at lower cost (i.e. lower average number of trials to completion), in both yes–no and two-alternative forced-choice (2AFC) tasks. We also considered the effect of the form and parameters of the psychometric function and its similarity with themodel function assumed in the procedure. Our results show that sequential procedures do not outperform fixed-length procedures in yes–no tasks. However, in 2AFC tasks, sequential procedures not based on sign fluctuations all yield minimally better estimates than fixed-length procedures, although most of the improvement occurs with short runs that render undependable estimates and the differences vanish when the procedures run for a number of trials (around 70) that ensures dependability. Thus, none of the indices considered here (some of which are widespread) has the diagnostic value that would justify its use. In addition, difficulties of implementation make sequential procedures unfit as alternatives to fixed-length procedures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective To synthesise recent research on the use of machine learning approaches to mining textual injury surveillance data. Design Systematic review. Data sources The electronic databases which were searched included PubMed, Cinahl, Medline, Google Scholar, and Proquest. The bibliography of all relevant articles was examined and associated articles were identified using a snowballing technique. Selection criteria For inclusion, articles were required to meet the following criteria: (a) used a health-related database, (b) focused on injury-related cases, AND used machine learning approaches to analyse textual data. Methods The papers identified through the search were screened resulting in 16 papers selected for review. Articles were reviewed to describe the databases and methodology used, the strength and limitations of different techniques, and quality assurance approaches used. Due to heterogeneity between studies meta-analysis was not performed. Results Occupational injuries were the focus of half of the machine learning studies and the most common methods described were Bayesian probability or Bayesian network based methods to either predict injury categories or extract common injury scenarios. Models were evaluated through either comparison with gold standard data or content expert evaluation or statistical measures of quality. Machine learning was found to provide high precision and accuracy when predicting a small number of categories, was valuable for visualisation of injury patterns and prediction of future outcomes. However, difficulties related to generalizability, source data quality, complexity of models and integration of content and technical knowledge were discussed. Conclusions The use of narrative text for injury surveillance has grown in popularity, complexity and quality over recent years. With advances in data mining techniques, increased capacity for analysis of large databases, and involvement of computer scientists in the injury prevention field, along with more comprehensive use and description of quality assurance methods in text mining approaches, it is likely that we will see a continued growth and advancement in knowledge of text mining in the injury field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

What type of probability theory best describes the way humans make judgments under uncertainty and decisions under conflict? Although rational models of cognition have become prominent and have achieved much success, they adhere to the laws of classical probability theory despite the fact that human reasoning does not always conform to these laws. For this reason we have seen the recent emergence of models based on an alternative probabilistic framework drawn from quantum theory. These quantum models show promise in addressing cognitive phenomena that have proven recalcitrant to modeling by means of classical probability theory. This review compares and contrasts probabilistic models based on Bayesian or classical versus quantum principles, and highlights the advantages and disadvantages of each approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In judicial decision making, the doctrine of chances takes explicitly into account the odds. There is more to forensic statistics, as well as various probabilistic approaches which taken together form the object of an enduring controversy in the scholarship of legal evidence. In this paper, we reconsider the circumstances of the Jama murder and inquiry (dealt with in Part I of this paper: "The Jama Model. On Legal Narratives and Interpretation Patterns"), to illustrate yet another kind of probability or improbability. What is improbable about the Jama story, is actually a given, which contributes in terms of dramatic underlining. In literary theory, concepts of narratives being probable or improbable date back from the eighteenth century, when both prescientific and scientific probability was infiltrating several domains, including law. An understanding of such a backdrop throughout the history of ideas is, I claim, necessary for AI researchers who may be tempted to apply statistical methods to legal evidence. The debate for or against probability (and especially bayesian probability) in accounts of evidence has been flouishing among legal scholars. Nowadays both the the Bayesians (e.g. Peter Tillers) and Bayesioskeptics (e.g. Ron Allen) among those legal scholars whoare involved in the controversy are willing to give AI researchers a chance to prove itself and strive towards models of plausibility that would go beyond probability as narrowly meant. This debate within law, in turn, has illustrious precedents: take Voltaire, he was critical of the application or probability even to litigation in civil cases; take Boole, he was a starry-eyed believer in probability applications to judicial decision making (Rosoni 1995). Not unlike Boole, the founding father of computing, nowadays computer scientists approaching the field may happen to do so without full awareness of the pitfalls. Hence, the usefulness of the conceptual landscape I sketch here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In judicial decision making, the doctrine of chances takes explicitly into account the odds. There is more to forensic statistics, as well as various probabilistic approaches, which taken together form the object of an enduring controversy in the scholarship of legal evidence. In this paper, I reconsider the circumstances of the Jama murder and inquiry (dealt with in Part I of this paper: 'The JAMA Model and Narrative Interpretation Patterns'), to illustrate yet another kind of probability or improbability. What is improbable about the Jama story is actually a given, which contributes in terms of dramatic underlining. In literary theory, concepts of narratives being probable or improbable date back from the eighteenth century, when both prescientific and scientific probability were infiltrating several domains, including law. An understanding of such a backdrop throughout the history of ideas is, I claim, necessary for Artificial Intelligence (AI) researchers who may be tempted to apply statistical methods to legal evidence. The debate for or against probability (and especially Bayesian probability) in accounts of evidence has been flourishing among legal scholars; nowadays both the Bayesians (e.g. Peter Tillers) and the Bayesio-skeptics (e.g. Ron Allen), among those legal scholars who are involved in the controversy, are willing to give AI research a chance to prove itself and strive towards models of plausibility that would go beyond probability as narrowly meant. This debate within law, in turn, has illustrious precedents: take Voltaire, he was critical of the application of probability even to litigation in civil cases; take Boole, he was a starry-eyed believer in probability applications to judicial decision making. Not unlike Boole, the founding father of computing, nowadays computer scientists approaching the field may happen to do so without full awareness of the pitfalls. Hence, the usefulness of the conceptual landscape I sketch here.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the Dempster-Shafer (D-S) theory of evidence and G. Yen's (1989), extension of the theory, the authors propose approaches to representing heuristic knowledge by evidential mapping and pooling the mass distribution in a complex frame by partitioning that frame using Shafter's partition technique. The authors have generalized Yen's model from Bayesian probability theory to the D-S theory of evidence. Based on such a generalized model, an extended framework for evidential reasoning systems is briefly specified in which a semi-graph method is used to describe the heuristic knowledge. The advantage of such a method is that it can avoid the complexity of graphs without losing the explicitness of graphs. The extended framework can be widely used to build expert systems

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An introduction to thinking about and understanding probability that highlights the main pits and trapfalls that befall logical reasoning

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An introduction to elicitation of experts' probabilities, which illustrates common problems with reasoning and how to circumvent them during elicitation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An introduction to eliciting a conditional probability table in a Bayesian Network model, highlighting three efficient methods for populating a CPT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes the development of a model, based on Bayesian networks, to estimate the likelihood that sheep flocks are infested with lice at shearing and to assist farm managers or advisers to assess whether or not to apply a lousicide treatment. The risk of lice comes from three main sources: (i) lice may have been present at the previous shearing and not eradicated; (ii) lice may have been introduced with purchased sheep; and (iii) lice may have entered with strays. A Bayesian network is used to assess the probability of each of these events independently and combine them for an overall assessment. Rubbing is a common indicator of lice but there are other causes too. If rubbing has been observed, an additional Bayesian network is used to assess the probability that lice are the cause. The presence or absence of rubbing and its possible cause are combined with these networks to improve the overall risk assessment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: To estimate the pretest probability of Cushing's syndrome (CS) diagnosis by a Bayesian approach using intuitive clinical judgment. MATERIALS AND METHODS: Physicians were requested, in seven endocrinology meetings, to answer three questions: "Based on your personal expertise, after obtaining clinical history and physical examination, without using laboratorial tests, what is your probability of diagnosing Cushing's Syndrome?"; "For how long have you been practicing Endocrinology?"; and "Where do you work?". A Bayesian beta regression, using the WinBugs software was employed. RESULTS: We obtained 294 questionnaires. The mean pretest probability of CS diagnosis was 51.6% (95%CI: 48.7-54.3). The probability was directly related to experience in endocrinology, but not with the place of work. CONCLUSION: Pretest probability of CS diagnosis was estimated using a Bayesian methodology. Although pretest likelihood can be context-dependent, experience based on years of practice may help the practitioner to diagnosis CS. Arq Bras Endocrinol Metab. 2012;56(9):633-7