977 resultados para Baxter Equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Perk-Schultz model may be expressed in terms of the solution of the Yang-Baxter equation associated with the fundamental representation of the untwisted affine extension of the general linear quantum superalgebra U-q (gl(m/n)], with a multiparametric coproduct action as given by Reshetikhin. Here, we present analogous explicit expressions for solutions of the Yang-Baxter equation associated with the fundamental representations of the twisted and untwisted affine extensions of the orthosymplectic quantum superalgebras U-q[osp(m/n)]. In this manner, we obtain generalizations of the Perk-Schultz model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 81R50, 16W50, 16S36, 16S37.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we consider algebro-geometric aspects of the Classical Yang-Baxter Equation and the Generalised Classical Yang-Baxter Equation. In chapter one we present a method to construct solutions of the Generalised Classical Yang-Baxter Equation starting with certain sheaves of Lie algebras on algebraic curves. Furthermore we discuss a criterion to check unitarity of such solutions. In chapter two we consider the special class of solutions coming from sheaves of traceless endomorphisms of simple vector bundles on the nodal cubic curve. These solutions are quasi-trigonometric and we describe how they fit into the classification scheme of such solutions. Moreover, we describe a concrete formula for these solutions. In the third and final chapter we show that any unitary, rational solution of the Classical Yang-Baxter Equation can be obtained via the method of chapter one applied to a sheaf of Lie algebras on the cuspidal cubic curve.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study Yang-Baxter deformations of 4D Minkowski spacetime. The Yang-Baxter sigma model description was originally developed for principal chiral models based on a modified classical Yang-Baxter equation. It has been extended to coset curved spaces and models based on the usual classical Yang-Baxter equation. On the other hand, for flat space, there is the obvious problem that the standard bilinear form degenerates if we employ the familiar coset Poincaré group/Lorentz group. Instead we consider a slice of AdS5 by embedding the 4D Poincaré group into the 4D conformal group SO(2, 4) . With this procedure we obtain metrics and B-fields as Yang-Baxter deformations which correspond to well-known configurations such as T-duals of Melvin backgrounds, Hashimoto-Sethi and Spradlin-Takayanagi-Volovich backgrounds, the T-dual of Grant space, pp-waves, and T-duals of dS4 and AdS4. Finally we consider a deformation with a classical r-matrix of Drinfeld-Jimbo type and explicitly derive the associated metric and B-field which we conjecture to correspond to a new integrable system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrowetting is one of the most effective methods to enhance wettability. A significant change of contact angle for the liquid droplet can result from the surface microstructures and the external electric field, without altering the chemical composition of the system. During the electrowetting process on a rough surface, the droplet exhibits a sharp transition from the Cassie-Baxter to the Wenzel regime at a low critical voltage. In this paper, a theoretical model for electrowetting is put forth to describe the dynamic electrical control of the wetting behavior at the low voltage, considering the surface topography. The theoretical results are found to be in good agreement with the existing experimental results. (c) Koninklijke Brill NV, Leiden, 2008.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A twisted generalized Weyl algebra A of degree n depends on a. base algebra R, n commuting automorphisms sigma(i) of R, n central elements t(i) of R and on some additional scalar parameters. In a paper by Mazorchuk and Turowska, it is claimed that certain consistency conditions for sigma(i) and t(i) are sufficient for the algebra to be nontrivial. However, in this paper we give all example which shows that this is false. We also correct the statement by finding a new set of consistency conditions and prove that the old and new conditions together are necessary and sufficient for the base algebra R to map injectively into A. In particular they are sufficient for the algebra A to be nontrivial. We speculate that these consistency relations may play a role in other areas of mathematics, analogous to the role played by the Yang-Baxter equation in the theory of integrable systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The concept of biperfect (noncocommutative) weak Hopf algebras is introduced and their properties are discussed. A new type of quasi-bicrossed products is constructed by means of weak Hopf skew-pairs of the weak Hopf algebras which are generalizations of the Hopf pairs introduced by Takeuchi. As a special case, the quantum double of a finite dimensional biperfect (noncocommutative) weak Hopf algebra is built. Examples of quantum doubles from a Clifford monoid as well as a noncommutative and noncocommutative weak Hopf algebra are given, generalizing quantum doubles from a group and a noncommutative and noncocommutative Hopf algebra, respectively. Moreover, some characterizations of quantum doubles of finite dimensional biperfect weak Hopf algebras are obtained. (C) 2004 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The central elements of the algebra of monodromy matrices associated with the Z(n) R-matrix are studied. When the crossing parameter w takes a special rational value w = n/N, where N and n are positive coprime integers, the center is substantially larger than that in the generic case for which the quantum determinant provides the center. In the trigonometric limit, the situation corresponds to the quantum group at roots of unity. This is a higher rank generalization of the recent results by Belavin and Jimbo. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Drinfeld twist for the opposite quasi-Hopf algebra, H-COP, is determined and is shown to be related to the (second) Drinfeld twist on a quasi-Hopf algebra. The twisted form of the Drinfeld twist is investigated. In the quasi-triangular case, it is shown that the Drinfeld u-operator arises from the equivalence of H-COP to the quasi-Hopf algebra induced by twisting H with the R-matrix. The Altschuler-Coste u-operator arises in a similar way and is shown to be closely related to the Drinfeld u-operator. The quasi-cocycle condition is introduced and is shown to play a central role in the uniqueness of twisted structures on quasi-Hopf algebras. A generalization of the dynamical quantum Yang-Baxter equation, called the quasi-dynamical quantum Yang-Baxter equation, is introduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose that the Baxter's Q-operator for the quantum XYZ spin chain with open boundary conditions is given by the j -> infinity limit of the corresponding transfer matrix with spin-j (i.e., (2j + I)-dimensional) auxiliary space. The associated T-Q relation is derived from the fusion hierarchy of the model. We use this relation to determine the Bethe Ansatz solution of the eigenvalues of the fundamental transfer matrix. The solution yields the complete spectrum of the Hamiltonian. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les algèbres de Temperley-Lieb originales, aussi dites régulières, apparaissent dans de nombreux modèles statistiques sur réseau en deux dimensions: les modèles d'Ising, de Potts, des dimères, celui de Fortuin-Kasteleyn, etc. L'espace d'Hilbert de l'hamiltonien quantique correspondant à chacun de ces modèles est un module pour cette algèbre et la théorie de ses représentations peut être utilisée afin de faciliter la décomposition de l'espace en blocs; la diagonalisation de l'hamiltonien s'en trouve alors grandement simplifiée. L'algèbre de Temperley-Lieb diluée joue un rôle similaire pour des modèles statistiques dilués, par exemple un modèle sur réseau où certains sites peuvent être vides; ses représentations peuvent alors être utilisées pour simplifier l'analyse du modèle comme pour le cas original. Or ceci requiert une connaissance des modules de cette algèbre et de leur structure; un premier article donne une liste complète des modules projectifs indécomposables de l'algèbre diluée et un second les utilise afin de construire une liste complète de tous les modules indécomposables des algèbres originale et diluée. La structure des modules est décrite en termes de facteurs de composition et par leurs groupes d'homomorphismes. Le produit de fusion sur l'algèbre de Temperley-Lieb originale permet de «multiplier» ensemble deux modules sur cette algèbre pour en obtenir un autre. Il a été montré que ce produit pouvait servir dans la diagonalisation d'hamiltoniens et, selon certaines conjectures, il pourrait également être utilisé pour étudier le comportement de modèles sur réseaux dans la limite continue. Un troisième article construit une généralisation du produit de fusion pour les algèbres diluées, puis présente une méthode pour le calculer. Le produit de fusion est alors calculé pour les classes de modules indécomposables les plus communes pour les deux familles, originale et diluée, ce qui vient ajouter à la liste incomplète des produits de fusion déjà calculés par d'autres chercheurs pour la famille originale. Finalement, il s'avère que les algèbres de Temperley-Lieb peuvent être associées à une catégorie monoïdale tressée, dont la structure est compatible avec le produit de fusion décrit ci-dessus. Le quatrième article calcule explicitement ce tressage, d'abord sur la catégorie des algèbres, puis sur la catégorie des modules sur ces algèbres. Il montre également comment ce tressage permet d'obtenir des solutions aux équations de Yang-Baxter, qui peuvent alors être utilisées afin de construire des modèles intégrables sur réseaux.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les algèbres de Temperley-Lieb originales, aussi dites régulières, apparaissent dans de nombreux modèles statistiques sur réseau en deux dimensions: les modèles d'Ising, de Potts, des dimères, celui de Fortuin-Kasteleyn, etc. L'espace d'Hilbert de l'hamiltonien quantique correspondant à chacun de ces modèles est un module pour cette algèbre et la théorie de ses représentations peut être utilisée afin de faciliter la décomposition de l'espace en blocs; la diagonalisation de l'hamiltonien s'en trouve alors grandement simplifiée. L'algèbre de Temperley-Lieb diluée joue un rôle similaire pour des modèles statistiques dilués, par exemple un modèle sur réseau où certains sites peuvent être vides; ses représentations peuvent alors être utilisées pour simplifier l'analyse du modèle comme pour le cas original. Or ceci requiert une connaissance des modules de cette algèbre et de leur structure; un premier article donne une liste complète des modules projectifs indécomposables de l'algèbre diluée et un second les utilise afin de construire une liste complète de tous les modules indécomposables des algèbres originale et diluée. La structure des modules est décrite en termes de facteurs de composition et par leurs groupes d'homomorphismes. Le produit de fusion sur l'algèbre de Temperley-Lieb originale permet de «multiplier» ensemble deux modules sur cette algèbre pour en obtenir un autre. Il a été montré que ce produit pouvait servir dans la diagonalisation d'hamiltoniens et, selon certaines conjectures, il pourrait également être utilisé pour étudier le comportement de modèles sur réseaux dans la limite continue. Un troisième article construit une généralisation du produit de fusion pour les algèbres diluées, puis présente une méthode pour le calculer. Le produit de fusion est alors calculé pour les classes de modules indécomposables les plus communes pour les deux familles, originale et diluée, ce qui vient ajouter à la liste incomplète des produits de fusion déjà calculés par d'autres chercheurs pour la famille originale. Finalement, il s'avère que les algèbres de Temperley-Lieb peuvent être associées à une catégorie monoïdale tressée, dont la structure est compatible avec le produit de fusion décrit ci-dessus. Le quatrième article calcule explicitement ce tressage, d'abord sur la catégorie des algèbres, puis sur la catégorie des modules sur ces algèbres. Il montre également comment ce tressage permet d'obtenir des solutions aux équations de Yang-Baxter, qui peuvent alors être utilisées afin de construire des modèles intégrables sur réseaux.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

International audience