950 resultados para Bauxite Residue Sand


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solubilities and dissolution rates of three gypsum sources (analytical grade (AG), phosphogypsum (PG) and mined gypsum (MG)) with six MG size fractions ((mm) > 2.0, 1.0-2.0, 0.5-1.0, 0.25-0.5, 0.125-0.25, and < 0.125) were investigated in triple deionised water (TDI) and seawater to examine their suitability for bauxite residue amelioration. Gypsum solubility was greater in seawater (3.8 g L 1) than TDI (2.9 g L 1) due to the ionic strength effect, with dissolution in both TDI and seawater following first order kinetics. Dissolution rate constants varied with gypsum source (AR > PG > MG) due to reactivity and surface area differences, with 1:20 gypsum:solution suspensions reaching saturation within 15 s (AR) to 30 min (MG > 2.0). The ability of bauxite residue to adsorb Ca from solution was also examined. The quantity of the total solution Ca adsorbed was found to be small (5 %). These low rates of solution Ca adsorption combined with the comparatively rapid dissolution rates preclude the application of gypsum to the residue sand/seawater slurry as a method for residue amelioration. Instead, direct field application to the residue would ensure more efficient gypsum use. In addition, the formation of a sparingly soluble CaCO3 coating around the gypsum particles after mixing in a highly alkaline seawater/supernatant liquor (SNL) solution greatly reduced the rate of gypsum dissolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of bauxite residue with seawater results in neutralization of alkalinity through precipitation of Mg-, Ca-, and Al-hydroxide and carbonate minerals. In batch studies, the initial pH neutralization reaction was rapid (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alumina extraction from bauxite ore with strong alkali produces waste bauxite refinery residue consisting of residue sand and red mud. The amount and composition of refinery residue depend on the purity of the bauxite ore and extraction conditions, and differs between refineries. The refinery residue is usually stored in engineered disposal areas that eventually have to be revegetated. This is challenging because of the alkaline and sodic nature of the residue. At Alcan Gove's bauxite refinery in Gove, Northern Territory, Australia, research into revegetation of bauxite residue has been conducted since the mid-1970s. In this review, we discuss approaches taken by Alcan Gove to achieve revegetation outcomes (soil capping of refinery residue) on wet-slurry disposal areas. Problems encountered in the past include poor drainage and water logging during the wet season, and salt scalding and capillary rise during the dry season. The amount of available water in the soil capping is the most important determinant of vegetation survival in the seasonally dry climate. Vegetation cover was found to prevent deterioration of the soil cover by minimising capillary rise of alkalinity from the refinery residue. The sodicity and alkalinity of the residue in old impoundments has diminished slightly over the 25 years since it was deposited. However, development of a blocky structure in red mud, presumably due to desiccation, allows root penetration, thereby supplying additional water to salt and alkali-tolerant plant species. This has led to the establishment of an ecosystem that approaches a native woodland.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Survival of vegetation on soil-capped mining wastes is often impaired during dry seasons due to the limited amount of water stored in the shallow soil capping. Growth and survival of Rhodes grass (Chloris gayana) during soil drying on various layered capping sequences constructed of combinations of topsoil, subsoil, seawater-neutralised residue sand and low grade bauxite was determined in a glasshouse. The aim was to describe the survival of Rhodes grass in terms of plant and soil water relationships. The soil water characteristic curve and soil texture analysis was a good predictor of plant survival. The combination of soil with a high water holding capacity and low soil water diffusivity (e.g. subsoil with high clay contents) with soil having a high water holding capacity and high diffusivity (e.g. residue sand) gave best survival during drying down (up to 88 days without water), whereas topsoil and low grade bauxite were unsuitable (plants died within 18-39 days). Clayey soil improved plant survival by triggering a water stress response during peak evaporative water demand once residue sand dried down and its diffusivity fell below a critical range. Thus, for revegetation in seasonally dry climates, soil capping should combine one soil with low diffusivity and one or more soils with high total water holding capacity and high diffusivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although plant growth is often limited at high pH, little is known about root-induced changes in the rhizospheres of plants growing in alkaline soils. The effect of Mn deficiency in Rhodes grass (Chloris gayana cv. Pioneer) and of legume inoculation in lucerne (Medicago sativa L. cv. Hunter River), on the rhizosphere pH of plants grown in highly alkaline bauxite residue was investigated. Rhizosphere pH was measured quantitatively, with a micro pH electrode, and qualitatively, with an agar/pH indicator solution. Manganese deficiency in Rhodes grass increased root-induced acidification of the rhizosphere in a soil profile in which N was supplied entirely as NO3-. Rhizosphere pH in the Mn deficient plants was up to 1.22 pH units lower than that of the bulk soil, while only 0.90 to 0.62 pH units lower in plants supplied with adequate Mn. When soil N was supplied entirely as NO3-, rhizosphere acidification was more efficient in inoculated lucerne (1.75 pH unit decrease) than in non-inoculated lucerne (1.16 pH unit decrease). This difference in capacity to lower rhizosphere pH is attributable to the ability of the inoculated lucerne to fix atmospheric N2 rather than relying on the soil N (NO3 ) reserves as the non-inoculated plants. Rhizosphere acidification in both Rhodes grass and lucerne was greatest in the meristematic root zone and least in the maturation root zone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Although it is well known that high Na concentrations induce Ca deficiency in acidic conditions, the effect of high pH on this competitive mechanism is not so well understood. The effect of Ca activity ratio (CAR) and pH on the Ca uptake of mungbeans (Vigna radiata (L.) Wilczek cv. Emerald) and Rhodes grass (Chloris gayana cv. Pioneer) in Na dominated solution cultures and in soil was investigated. Changes in pH in the alkaline range were shown not to affect the critical CAR of 0.024 (corresponding to 90 % relative root length) for mungbeans grown in solution culture. Results from soil grown mungbeans confirmed those from solution culture, with a critical CAR of 0.025. A critical CAR of 0.034 was also established for soil grown Rhodes grass. The similarity of critical values established for mungbeans and Rhodes grass in solution culture and soil justifies the use of both solution culture and soil solution measurement as techniques for studying plant growth and limitations across plant species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Australian minerals industry, which is dominated by coal, gold, bauxite, iron ore, base metals and mineral sand operations, is widely scattered across a continent which has a wide range of climatic zones ranging from moist temperate in the south through hot deserts in the centre to moist tropical in the north. There is an emphasis at most mines on establishing native ecosystems after mining, and technologies have had to be developed to ensure successful establishment and stability of these ecosystems under often adverse climatic conditions. This paper describes some of the innovative practices used to establish native ecosystenms in bauxite, mineral sand and coal operations across diverse biogeographic zones. Additionally, brief reference is made to an ecosystem function analysis, which has been developed to assess the success of establishment of these ecosystems. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bauksiittijäte on alumiinin jalostuksessa syntyvä sivutuote, jonka alkalisuus on riski lähiympäristön ekosysteemeille. Alkalisuuden aiheuttamaan riskiin etsittiin ratkaisua perehtymällä bauksiittijätteen käsittelyyn. Kandidaatintyössä esitettiin eri menetelmiä bauksiittijätteen neutraloimiseksi, stabiloimiseksi ja varastoimiseksi. Menetelmien periaatteet määritettiin kirjallisuudesta löytyvien tutkimusten pohjalta, joiden perusteella voitiin määrittää toimivimmat menetelmät bauksiittijätteen käsittelemiseksi. Käytännöllisimmiksi käsittelymenetelmiksi osoittautuivat meriveden ja/tai hiilidioksidin lisääminen bauksiittijätteeseen sen neutraloimiseksi. Bauksiittijätteen stabiloimiseksi siihen tulee lisätä kiinteää materiaalia, kuten kalkkia, kiintoainepitoisuuden nostamiseksi sekä kovettuvien yhdisteiden muodostumiseksi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The experiment was carried out in green house with the objective of evaluating the effect of the bauxite mining residue in the rates of macronutrients in sugarcane and soil. Containers of 10 L were used. They received the following rates of bauxite residue: 0; 28; 56; 84; 112 and 140 t ha(-1). The used culture was the sugarcane (SP92 4221). The incorporation of the bauxite residue in the soil provided an increase in the levels of the soil macronutrients, and only for sulphur levels above 83 t ha(-1), it was possible to provide reductions of this nutrient. For rates of determined macronutrients in the leaf, levels above 70, 5; 125; 101; 56 t ha (-1) diminished the rates of nitrogen, phosphorum, potassium and sulphur, respectively. However, for calcium and magnesium the use of the residue provided the reduction of leaf rates. The level of the bauxite residue which had the largest production of dry mass was 64 t ha(-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Um dos problemas ambientais mais discutidos atualmente no cenário mundial são o aquecimento global e suas implicações. Apesar de o efeito estufa ser um fenômeno natural, o aumento nas emissões de gases como o CO2 proveniente do processo de combustão, pode favorecer o seu agravamento. Seguindo essa vertente, existe o interesse na realização de pesquisas para minimizar a liberação deste gás na atmosfera. Este trabalho, tem por finalidade estudar o processo de absorção do dióxido de carbono pela fase aquosa do resíduo de bauxita (soda e íons dissolvidos em solução) em torre de aspersão e em torre de selas randômicas (ambas em escala piloto), bem como verificar a alteração do pH nesse processo de absorção para ambas as torres. Avaliar a alteração do pH e a capacidade de absorção do CO2 , considerando as seguintes variáveis: O tipo de torre de absorção, o uso do sobrenadante como meio absorvente e o uso da suspensão aquecida por resistências. Os resultados mostraram que a suspensão do resíduo de bauxita absorveu quantidade significativa de CO2 , tanto na torre de aspersão quanto na torre de selas. A taxa de absorção média ficou em torno de 8,42% para a torre de aspersão e 9,34% para a torre de selas. A capacidade de carbonatação da suspensão à 27%-p ficou em torno de 33,3 Kg CO2 por tonelada de resíduo e houve uma redução substancial da alcalinidade do resíduo através da reação com os efluentes gasosos, com uma diminuição média de 4,0 e 3,5 unidades de pH para a torre de selas e de aspersão respectivamente.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este estudo ilustra o impacto da calcinação de resíduo de bauxita (RB) nas propriedades de suspensões formuladas com cimento Portland, tanto no estado fresco como no endurecido. As suspensões foram avaliadas contendo uma razão constante de água-cimento e teor de resíduo variando de 5% a 20% em peso e em substituição ao cimento. As propriedades reológicas e a resistência mecânica foram alteradas em função do aumento do teor de RB, mas a calcinação não teve influência no resultado final obtido, seja no estado fresco ou no endurecido. Assim, pode-se afirmar que a utilização de resíduo de bauxita, natural ou calcinada, em formulações com cimento Portland pode reduzir o consumo de cimento, sendo uma alternativa para a utilização de uma grande quantidade deste tipo de resíduo.