896 resultados para Batterie lithium-ion
Resumo:
Le marché des accumulateurs lithium-ion est en expansion. Cette croissance repose partiellement sur la multiplication des niches d’utilisation et l’amélioration constante de leurs performances. En raison de leur durabilité exceptionnelle, de leur faible coût, de leur haute densité de puissance et de leur fiabilité, les anodes basées sur les titanates de lithium, et plus particulièrement le spinelle Li4Ti5O12, présentent une alternative d’intérêt aux matériaux classiques d’anodes en carbone pour de multiples applications. Leur utilisation sous forme de nanomatériaux permet d’augmenter significativement la puissance disponible par unité de poids. Ces nanomatériaux ne sont typiquement pas contraints dans une direction particulière (nanofils, nanoplaquettes), car ces formes impliquent une tension de surface plus importante et requièrent donc généralement un mécanisme de synthèse dédié. Or, ces nanostructures permettent des réductions supplémentaires dans les dimensions caractéristiques de diffusion et de conduction, maximisant ainsi la puissance disponible, tout en affectant les propriétés habituellement intrinsèques des matériaux. Par ailleurs, les réacteurs continus reposant sur la technologie du plasma thermique inductif constituent une voie de synthèse démontrée afin de générer des volumes importants de matériaux nanostructurés. Il s’avère donc pertinent d’évaluer leur potentiel dans la production de titanates de lithium nanostructurés. La pureté des titanates de lithium est difficile à jauger. Les techniques de quantification habituelles reposent sur la fluorescence ou la diffraction en rayons X, auxquelles le lithium élémentaire se prête peu ou pas. Afin de quantifier les nombreuses phases (Li4Ti5O12, Li2Ti3O7, Li2TiO3, TiO2, Li2CO3) identifiées dans les échantillons produits par plasma, un raffinement de Rietveld fut développé et validé. La présence de γ-Li2TiO3 fut identifiée, et la calorimétrie en balayage différentiel fut explorée comme outil permettant d’identifier et de quantifier la présence de β-Li2TiO3. Différentes proportions entre les phases produites et différents types de morphologies furent observés en fonction des conditions d’opération du plasma. Ainsi, des conditions de trempe réductrice et d’ensemencement en Li4Ti5O12 nanométrique semblent favoriser l’émergence de nanomorphologies en nanofils (associés à Li4Ti5O12) et en nanoplaquette (associées à Li2TiO3). De plus, l’ensemencement et les recuits augmentèrent significativement le rendement en la phase spinelle Li4Ti5O12 recherchée. Les recuits sur les poudres synthétisées par plasma indiquèrent que la décomposition du Li2Ti3O7 produit du Li4Ti5O12, du Li2TiO3 et du TiO2 (rutile). Afin d’approfondir l’investigation de ces réactions de décomposition, les paramètres cristallins du Li2Ti3O7 et du γ-Li2TiO3 furent définis à haute température. Des mesures continues en diffraction en rayon X à haute température furent réalisées lors de recuits de poudres synthétisées par plasma, ainsi que sur des mélanges de TiO2 anatase et de Li2CO3. Celles-ci indiquent la production d’un intermédiaire Li2Ti3O7 à partir de l’anatase et du carbonate, sa décomposition en Li4Ti5O12 et TiO2 (rutile) sur toute la plage de température étudiée, et en Li2TiO3 et TiO2 (rutile) à des températures inférieures à 700°C.
Resumo:
A hybrid nano-urchin structure consisting of spherical onion-like carbon and MnO2 nanosheets is synthesized by a facile and environmentally-friendly hydrothermal method. Lithium-ion batteries incorporating the hybrid nano-urchin anode exhibit reversible lithium storage with superior specific capacity, enhanced rate capability, stable cycling performance, and nearly 100% Coulombic efficiency. These results demonstrate the effectiveness of designing hybrid nano-architectures with uniform and isotropic structure, high loading of electrochemically-active materials, and good conductivity for the dramatic improvement of lithium storage.
Resumo:
Porous high surface area thin films of nanosheet-shaped monoclinic MoO 3 were deposited onto platinized Si substrates using patch antenna-based atmospheric microplasma processing. The films were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and electrochemical analysis. The electrochemical analysis shows original redox peaks and high charge capacity, and also indicates a reversible electrochemical behaviour particularly beneficial for applications in Li-ion batteries. SEM shows that the films are highly porous and consist of nanosheets 50-100 nm thick with surface dimensions in the micrometre range. HRTEM reveals that the MoO3 nanosheets consist of the monoclinic beta phase of MoO3. These intricate nanoarchitectures made of monoclinic MoO3 nanosheets have not been studied previously in the context of applications in Li-ion batteries and show superior structural and morphological features that enable effective insertion of Li ions.
Resumo:
Si has attracted enormous research and manufacturing attention as an anode material for lithium ion batteries (LIBs) because of its high specific capacity. The lack of a low cost and effective mechanism to prevent the pulverization of Si electrodes during the lithiation/ delithiation process has been a major barrier in the mass production of Si anodes. Naturally abundant gum arabic (GA), composed of polysaccharides and glycoproteins, is applied as a dualfunction binder to address this dilemma. Firstly, the hydroxyl groups of the polysaccharide in GA are crucial in ensuring strong binding to Si. Secondly, similar to the function of fiber in fiberreinforced concrete (FRC), the long chain glycoproteins provide further mechanical tolerance to dramatic volume expansion by Si nanoparticles. The resultant Si anodes present an outstanding capacity of ca. 2000 mAh/g at a 1 C rate and 1000 mAh/g at 2 C rate, respectively, throughout 500 cycles. Excellent long-term stability is demonstrated by the maintenance of 1000 mAh/g specific capacity at 1 C rate for over 1000 cycles. This low cost, naturally abundant and environmentally benign polymer is a promising binder for LIBs in the future.
Resumo:
Nb2O5 nanosheets are successfully synthesized through a facile hydrothermal reaction and followed heating treatment in air. The structural characterization reveals that the thickness of these sheets is around 50 nm and the length of sheets is 500~800 nm. Such a unique two dimensional structure enables the nanosheet electrode with superior performance during the charge-discharge process, such as high specific capacity (~184 mAh.g-1) and rate capability. Even at a current density of 1 A.g-1, the nanosheet electrode still exhibits a specific capacity of ~90 mAh.g-1. These results suggest the Nb2O5 nanosheet is a promising candidate for high-rate lithium ion storage applications.
Resumo:
An environmentally benign, highly conductive, and mechanically strong binder system can overcome the dilemma of low conductivity and insufficient mechanical stability of the electrodes to achieve high performance lithium ion batteries (LIBs) at a low cost and in a sustainable way. In this work, the naturally occurring binder sodium alginate (SA) is functionalized with 3,4-propylenedioxythiophene-2,5-dicarboxylic acid (ProDOT) via a one-step esterification reaction in a cyclohexane/dodecyl benzenesulfonic acid (DBSA)/water microemulsion system, resulting in a multifunctional polymer binder, that is, SA-PProDOT. With the synergetic effects of the functional groups (e.g., carboxyl, hydroxyl, and ester groups), the resultant SA-PProDOT polymer not only maintains the outstanding binding capabilities of sodium alginate but also enhances the mechanical integrity and lithium ion diffusion coefficient in the LiFePO4 (LFP) electrode during the operation of the batteries. Because of the conjugated network of the PProDOT and the lithium doping under the battery environment, the SA-PProDOT becomes conductive and matches the conductivity needed for LiFePO4 LIBs. Without the need of conductive additives such as carbon black, the resultant batteries have achieved the theoretical specific capacity of LiFePO4 cathode (ca. 170 mAh/g) at C/10 and ca. 120 mAh/g at 1C for more than 400 cycles.
Resumo:
Directional synthesis of SnO2@graphene nanocomposites via a one-step, low-cost, and up-scalable wetmechanochemical method is achieved using graphene oxide and SnCl2 as precursors. The graphene oxides are reduced to graphene while the SnCl2 is oxidized to SnO2 nanoparticles that are in situ anchored onto the graphene sheets evenly and densely, resulting in uniform SnO2@graphene nanocomposites. The prepared nanocomposites possess excellent electrochemical performance and outstanding cycling in Li-ion batteries.
Resumo:
Hybrid urchin-like nanostructures composed of a spherical onion-like carbon (OLC) core and MoS2 nanoleaves were synthesized by a simple solvothermal method followed by thermal annealing treatment. Compared to commercial MoS2 powder, MoS2/OLC nanocomposites exhibit enhanced electrochemical performance as anode materials of lithium-ion batteries (LIBs) with a specific capacity of 853 mA h g−1 at a current density of 50 mA g−1 after 60 cycles, and a moderate initial coulombic efficiency of 71.1%. Furthermore, a simple pre-lithiation method based on direct contact of lithium foil with MoS2/OLC nano-urchins was used to achieve a very high coulombic efficiency of 97.6% in the first discharge/charge cycle, which is at least 26% higher compared to that of pristine MoS2/OLC nano-urchins. This pre-lithiation method can be generalized to develop other carbon-metal sulfide nanohybrids for LIB anode materials. These results may open up a new avenue for the development of the next-generation high-performance LIBs.
Resumo:
The catalytic role of germanium (Ge) was investigated to improve the electrochemical performance of tin dioxide grown on graphene (SnO(2)/G) nanocomposites as an anode material of lithium ion batteries (LIBs). Germanium dioxide (GeO(20) and SnO(2) nanoparticles (<10 nm) were uniformly anchored on the graphene sheets via a simple single-step hydrothermal method. The synthesized SnO(2)(GeO(2))0.13/G nanocomposites can deliver a capacity of 1200 mA h g(-1) at a current density of 100 mA g(-1), which is much higher than the traditional theoretical specific capacity of such nanocomposites (∼ 702 mA h g(-1)). More importantly, the SnO(2)(GeO(2))0.13/G nanocomposites exhibited an improved rate, large current capability (885 mA h g(-1) at a discharge current of 2000 mA g(-1)) and excellent long cycling stability (almost 100% retention after 600 cycles). The enhanced electrochemical performance was attributed to the catalytic effect of Ge, which enabled the reversible reaction of metals (Sn and Ge) to metals oxide (SnO(2) and GeO(2)) during the charge/discharge processes. Our demonstrated approach towards nanocomposite catalyst engineering opens new avenues for next-generation high-performance rechargeable Li-ion batteries anode materials.
Resumo:
Lithium silicophosphate glasses have been prepared by a sol-gel route over a wide range of compositions. Their structural and electrical properties have been investigated. Infrared spectroscopic studies show the presence of hydroxyl groups attached to Si and P. MAS NMR investigations provide evidence for the presence of different phosphatic units in the structure. The variations of de conductivities at 423 K and activation energies have been studied as a function of composition, and both exhibit an increasing trend with the ratio of nonbridging oxygen to bridging oxygen in the structure. Ac conductivity behavior shows that the power law exponent, s, is temperature dependent and exhibits a minimum. Relaxation behavior has been examined in detail using an electrical modulus formalism, and modulus data were fitted to Kohlraush-William-Watts stretched exponential function. A structural model has been proposed and the unusual properties exhibited by this unique system of glasses have been rationalized using this model. Ion transport in these glasses appears to be confined to unidimensional conduits defined by modified phosphate chains and interspersed with unmodified silica units.
Resumo:
The lithium-ion exchange rate capability of various commercial graphite materials are evaluated using galvanostatic charge/discharge cycling in a half-cell configuration over a wide range of C-rates (0.1 similar to 60C). The results confirm that graphite is capable of de-intercalating stored charge at high rates, but has a poor intercalating rate capability. Decreasing the graphite coating thickness leads to a limited rate performance improvement of the electrode. Reducing the graphite particle size shows enhanced C-rate capability but with increased irreversible capacity loss (ICL). It is demonstrated that the rate of intercalation of lithium-ions into the graphite is significantly limited compared with the corresponding rate of de-intercalation at high C-rates. For the successful utilisation of commercially available conventional graphite as a negative electrode in a lithium-ion capacitor (LIC), its intercalation rate capability needs to be improved or oversized to accommodate high charge rates.
Resumo:
Silicon has demonstrated great potential as anode materials for next-generation high-energy density rechargeable lithium ion batteries. However, its poor mechanical integrity needs to be improved to achieve the required cycling stability. Nano-structured silicon has been used to prevent the mechanical failure caused by large volume expansion of silicon. Unfortunately, pristine silicon nanostructures still suffer from quick capacity decay due to several reasons, such as formation of solid electrolyte interphase, poor electrical contact and agglomeration of nanostructures. Recently, increasing attention has been paid to exploring the possibilities of hybridization with carbonaceous nanostructures to solve these problems. In this review, the recent advances in the design of carbon-silicon nanohybrid anodes and existing challenges for the development of high-performance lithium battery anodes are briefly discussed.
Resumo:
Hierarchical SnO2 hollow spheres self-assembled from nanosheets were prepared with and without carbon coating. The combination of nanosized architecture, hollow structure, and a conductive carbon layer endows the SnO2-based anode with improved specific capacity and cycling stability, making it more promising for use in lithium ion batteries.
Resumo:
An "atomic layer-by-layer" structure of Co3O4/graphene is developed as an anode material for lithium-ion batteries. Due to the atomic thickness of both the Co3O4 nanosheets and the graphene, the composite exhibits an ultrahigh specific capacity of 1134.4 mAh g-1 and an ultralong life up to 2000 cycles at 2.25 C, far beyond the performances of previously reported Co3O4/C composites.