1000 resultados para Batchelor model
Resumo:
Wingtip vortices represent a hazard for the stability of the following airplane in airport highways. These flows have been usually modeled as swirling jets/wakes, which are known to be highly unstable and susceptible to breakdown at high Reynolds numbers for certain flow conditions, but different to the ones present in real flying airplanes. A very recent study based on Direct Numerical Simulations (DNS) shows that a large variety of helical responses can be excited and amplified when a harmonic inlet forcing is imposed. In this work, the optimal response of q-vortex (both axial vorticity and axial velocity can be modeled by a Gaussian profile) is studied by considering the time-harmonically forced problem with a certain frequency ω. We first reproduce Guo and Sun’s results for the Lamb-Oseen vortex (no axial flow) to validate our numerical code. In the axisymmetric case m = 0, the system response is the largest when the input frequency is null. The axial flow has a weak influence in the response for any axial velocity intensity. We also consider helical perturbations |m| = 1. These perturbations are excited through a resonance mechanism at moderate and large wavelengths as it is shown in Figure 1. In addition, Figure 2 shows that the frequency at which the optimal gain is obtained is not a continuous function of the axial wavenumber k. At smaller wavelengths, large response is excited by steady forcing. Regarding the axial flow, the unstable response is the largest when the axial velocity intensity, 1/q, is near to zero. For perturbations with higher azimuthal wavenumbers |m| > 1, the magnitudes of the response are smaller than those for helical modes. In order to establish an alternative validation, DNS has been carried out by using a pseudospectral Fourier formulation finding a very good agreement.
Resumo:
Wingtip vortices are created by flying airplanes due to lift generation. The vortex interaction with the trailing aircraft has sparked researchers’ interest to develop an efficient technique to destroy these vortices. Different models have been used to describe the vortex dynamics and they all show that, under real flight conditions, the most unstable modes produce a very weak amplification. Another linear instability mechanism that can produce high energy gains in short times is due to the non-normality of the system. Recently, it has been shown that these non-normal perturbations also produce this energy growth when they are excited with harmonic forcing functions. In this study, we analyze numerically the nonlinear evolution of a spatially, pointwise and temporally forced perturbation, generated by a synthetic jet at a given radial distance from the vortex core. This type of perturbation is able to produce high energy gains in the perturbed base flow (10^3), and is also a suitable candidate for use in engineering applications. The flow field is solved for using fully nonlinear three-dimensional direct numerical simulation with a spectral multidomain penalty method model. Our novel results show that the nonlinear effects are able to produce locally small bursts of instability that reduce the intensity of the primary vortex.
Resumo:
We study the degree to which Kraichnan–Leith–Batchelor (KLB) phenomenology describes two-dimensional energy cascades in α turbulence, governed by ∂θ/∂t+J(ψ,θ)=ν∇2θ+f, where θ=(−Δ)α/2ψ is generalized vorticity, and ψ^(k)=k−αθ^(k) in Fourier space. These models differ in spectral non-locality, and include surface quasigeostrophic flow (α=1), regular two-dimensional flow (α=2) and rotating shallow flow (α=3), which is the isotropic limit of a mantle convection model. We re-examine arguments for dual inverse energy and direct enstrophy cascades, including Fjørtoft analysis, which we extend to general α, and point out their limitations. Using an α-dependent eddy-damped quasinormal Markovian (EDQNM) closure, we seek self-similar inertial range solutions and study their characteristics. Our present focus is not on coherent structures, which the EDQNM filters out, but on any self-similar and approximately Gaussian turbulent component that may exist in the flow and be described by KLB phenomenology. For this, the EDQNM is an appropriate tool. Non-local triads contribute increasingly to the energy flux as α increases. More importantly, the energy cascade is downscale in the self-similar inertial range for 2.5<α<10. At α=2.5 and α=10, the KLB spectra correspond, respectively, to enstrophy and energy equipartition, and the triad energy transfers and flux vanish identically. Eddy turnover time and strain rate arguments suggest the inverse energy cascade should obey KLB phenomenology and be self-similar for α<4. However, downscale energy flux in the EDQNM self-similar inertial range for α>2.5 leads us to predict that any inverse cascade for α≥2.5 will not exhibit KLB phenomenology, and specifically the KLB energy spectrum. Numerical simulations confirm this: the inverse cascade energy spectrum for α≥2.5 is significantly steeper than the KLB prediction, while for α<2.5 we obtain the KLB spectrum.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model