991 resultados para Batch-wise process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimisation and Parameter Estimation (DISOPE) which has been designed to achieve the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A method based on Broyden's ideas is used for approximating some derivative trajectories required. Ways for handling con straints on both manipulated and state variables are described. Further, a method for coping with batch-to- batch dynamic variations in the process, which are common in practice, is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch processes. The algorithm is success fully applied to a benchmark problem consisting of the input profile optimisation of a fed-batch fermentation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this investigation was to study the chemical reactions occurring during the batchwise production of a butylated melamine-formaldehyde resin, in order to optimise the efficiency and economics of the batch processes. The batch process models are largely empirical in nature as the reaction mechanism is unknown. The process chemistry and the commercial manufacturing method are described. A small scale system was established in glass and the ability to produce laboratory resins with the required quality was demonstrated, simulating the full scale plant. During further experiments the chemical reactions of methylolation, condensation and butylation were studied. The important process stages were identified and studied separately. The effects of variation of certain process parameters on the chemical reactions were also studied. A published model of methylolation was modified and used to simulate the methylolation stage. A major result of this project was the development of an indirect method for studying the condensation and butylation reactions occurring during the dehydration and acid reaction stages, as direct quantitative methods were not available. A mass balance method was devised for this purpose and used to collect experimental data. The reaction scheme was verified using this data. The reactions stages were simulated using an empirical model. This has revealed new information regarding the mechanism and kinetics of the reactions. Laboratory results were shown to be comparable with plant scale results. This work has improved the understanding of the batch process, which can be used to improve product consistency. Future work has been identified and recommended to produce an optimum process and plant design to reduce the batch time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon capture and storage (CCS) in the oil and water industries is becoming common and a significant consumer of energy typically requiring 150–450 °C and or several hundred bar pressure [1] particularly in geological deposition. A biological carbon capture and conversion has been considered in conventional anaerobic digestion processes. The process has been utilised in biological mixed culture, where acetoclastic bacteria and hydrogenophilic methanogens play a major key role in the utilisation of carbon dioxide. However, the bio catalytic microorganisms, hydrogenophilic methanogens are reported to be unstable with acetoclastic bacteria. In this work the biochemical thermodynamic efficiency was investigated for the stabilisation of the microbial process in carbon capture and utilisation. The authors observed that a thermodynamic efficiency of biological carbon capture and utilisation (BCCU) had 32% of overall reduction in yield of carbon dioxide with complimentary increase of 30% in yield of methane, while the process was overall endothermic. Total consumption of energy (≈0.33 MJ l−1) was estimated for the carbonate solubility (0.1 mol l−1) in batched BCCU. This has a major influence on microbial composition in the bioreactor. This thermodynamic study is an essential tool to aid the understanding of the interactions between operating parameters and the mixed microbial culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was the preparation of a silsesquioxane functionalized with eight chloropropyl chains (T8-PrCl) and of a new derivative functionalized with a pendant linear chain (2-amino-1,3,4-thiadiazole - ATD; T8-Pr-ATD). The two nanostructured materials were characterized by 13C and 29Si NMR, FTIR and elemental analysis. The new nanostructured material, octakis[3-(2-amino-1,3,4-thiadiazole)propyl] octasilsesquioxane (T8-Pr-ATD), was tested as a ligand for transition-metal ions with a special attention to adsorption isotherms. The adsorption was performed using a batchwise process and the organofunctionalized surface showed the ability to adsorb the metal ions Cu (II), Co (II), and Ni (II) from water and ethanol. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) model. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and Elovich models were the most appropriate to describe the adsorption and kinetic data, respectively. Furthermore, the T8-Pr-ATD was successfully applied to the analysis of environmental samples (river and sea water). Subsequently, a new nanomaterial was prepared by functionalization of the T8-Pr-ATD with a Mo (II) organometallic complex (T8-Pr-ATD-Mo). Only a few works in the literature have reported this type of substitution, and none dealt with ATD and Mo (II) complexes. The new Mo-silsesquioxane organometallic nanomaterial was tested as precursor in the epoxidation of cyclooctene and styrene. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ammonium nitrogen removal from a synthetic wastewater by nitrification and denitrification processes were performed in a sequencing batch biofilm reactor containing immobilized biomass on polyurethane foam with circulation of the liquid-phase. It was analyzed the effect of four external carbon sources (ethanol, acetate, carbon synthetic medium and methanol) acting as electron donors in the denitrifying process. The experiments were conducted with intermittent aeration and operated at 30+/-1 degrees C in 8-h cycles. The synthetic wastewater (100 mgCOD/L and 50 mgNH(4)(+)-N/L) was added batch-wise, while the external carbon sources were added fed-batch-wise during the periods where aeration was suspended. Ammonium nitrogen removal efficiencies obtained were 95.7, 94.3 and 97.5% for ethanol, acetate and carbon synthetic medium, respectively. As to nitrite, nitrate and ammonium nitrogen effluent concentrations, the results obtained were, respectively: 0.1, 5.7 and 1.4 mg/L for ethanol; 0.2, 4.1 and 1.8 mg/L for acetate and 0.2, 6.7 and 0.8 for carbon synthetic medium. On the other hand using methanol, even at low concentrations (50% of the stoichiometric value calculated for complete denitrification), resulted in increasing accumulation of nitrate and ammonium nitrogen in the effluent over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concerning process control of batch cooling crystallization the present work focused on the cooling profile and seeding technique. Secondly, the influence of additives on batch-wise precipitation process was investigated. Moreover, a Computational Fluid Dynamics (CFD) model for simulation of controlled batch cooling crystallization was developed. A novel cooling model to control supersaturation level during batch-wise cooling crystallization was introduced. The crystallization kinetics together with operating conditions, i.e. seed loading, cooling rate and batch time, were taken into account in the model. Especially, the supersaturation- and suspension density- dependent secondary nucleation was included in the model. The interaction between the operating conditions and their influence on the control target, i.e. the constant level of supersaturation, were studied with the aid of a numerical solution for the cooling model. Further, the batch cooling crystallization was simulated with the ideal mixing model and CFD model. The moment transformation of the population balance, together with the mass and heat balances, were solved numerically in the simulation. In order to clarify a relationship betweenthe operating conditions and product sizes, a system chart was developed for anideal mixing condition. The utilization of the system chart to determine the appropriate operating condition to meet a required product size was introduced. With CFD simulation, batch crystallization, operated following a specified coolingmode, was studied in the crystallizers having different geometries and scales. The introduced cooling model and simulation results were verified experimentallyfor potassium dihydrogen phosphate (KDP) and the novelties of the proposed control policies were demonstrated using potassium sulfate by comparing with the published results in the literature. The study on the batch-wise precipitation showed that immiscible additives could promote the agglomeration of a derivative of benzoic acid, which facilitated the filterability of the crystal product.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a technological viability study of wastewater treatment in an automobile industry by an anaerobic sequencing batch biofilm reactor containing immobilized biomass (AnSBBR) with a draft tube. The reactor was operated in 8-h cycles, with agitation of 400 rpm, at 30 degrees C and treating 2.0 L wastewater per cycle. Initially the efficiency and stability of the reactor were studied when supplied with nutrients and alkalinity. Removal efficiency of 88% was obtained at volumetric loading rate (VLR) of 3.09 mg COD/L day. When VLR was increased to 6.19 mg COD/L day the system presented stable operation with reduction in efficiency of 71%. In a second stage the AnSBBR was operated treating wastewater in natura, i.e., without nutrients supplementation, only with alkalinity, thereby changing feed strategy. The first strategy consisted in feeding 2.0 L batch wise (10 min), the second in feeding 1.0 L of influent batch wise (10 min) and an additional 1.0 L fed-batch wise (4 h), both dewatering 2.0 L of the effluent in 10 min. The third one maintained 1.0 L of treated effluent in the reactor, without discharging, and 1.0 L of influent was fed fed-batch wise (4 h) with dewatering 1.0 L of the effluent in 10 min. For all implemented strategies (VLR of 1.40, 2.57 and 2.61 mg COD/L day) the system presented stability and removal efficiency of approximately 80%. These results show that the AnSBBR presents operational flexibility, as the influent can be fed according to industry availability. In industrial processes this is a considerable advantage, as the influent may be prone to variations. Moreover, for all the investigated conditions the kinetic parameters were obtained from fitting a first-order model to the profiles of organic matter, total volatile acids and methane concentrations. Analysis of the kinetic parameters showed that the best strategy is feeding 1.0 L of influent batchwise (10 min) and 1.0 L fed-batch wise (4 h) in 8-h cycle. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The main objective of this work was to investigate the application of experimental design techniques for the identification of Michaelis-Menten kinetic parameters. More specifically, this study attempts to elucidate the relative advantages/disadvantages of employing complex experimental design techniques in relation to equidistant sampling when applied to different reactor operation modes. All studies were supported by simulation data of a generic enzymatic process that obeys to the Michaelis-Menten kinetic equation. Different aspects were investigated, such as the influence of the reactor operation mode (batch, fed-batch with pulse wise feeding and fed-batch with continuous feeding) and the experimental design optimality criteria on the effectiveness of kinetic parameters identification. The following experimental design optimality criteria were investigated: 1) minimization of the sum of the diagonal of the Fisher information matrix (FIM) inverse (A-criterion), 2) maximization of the determinant of the FIM (D-criterion), 3) maximization of the smallest eigenvalue of the FIM (E-criterion) and 4) minimization of the quotient between the largest and the smallest eigenvalue (modified E-criterion). The comparison and assessment of the different methodologies was made on the basis of the Cramér-Rao lower bounds (CRLB) error in respect to the parameters vmax and Km of the Michaelis-Menten kinetic equation. In what concerns the reactor operation mode, it was concluded that fed-batch (pulses) is better than batch operation for parameter identification. When the former operation mode is adopted, the vmax CRLB error is lowered by 18.6 % while the Km CRLB error is lowered by 26.4 % when compared to the batch operation mode. Regarding the optimality criteria, the best method was the A-criterion, with an average vmax CRLB of 6.34 % and 5.27 %, for batch and fed-batch (pulses), respectively, while presenting a Km’s CRLB of 25.1 % and 18.1 %, for batch and fed-batch (pulses), respectively. As a general conclusion of the present study, it can be stated that experimental design is justified if the starting parameters CRLB errors are inferior to 19.5 % (vmax) and 45% (Km), for batch processes, and inferior to 42 % and to 50% for fed-batch (pulses) process. Otherwise equidistant sampling is a more rational decision. This conclusion clearly supports that, for fed-batch operation, the use of experimental design is likely to largely improve the identification of Michaelis-Menten kinetic parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Työn tavoitteena oli kuvata ja ottaa käyttöön sahauseräkohtaisen kannattavuuden laskentamenetelmä sahalle, sekä tehdä laskentamalli menetelmän tueksi. Sahauksen peruskäsitteiden jälkeen työssä on esitelty sahan tuotantoprosessi. Tuotantoprosessi on kuvattu kirjallisuuden ja asiantuntijoiden haastattelujen perusteella. Seuraavaksi kartoitettiin hyötyjä ja vaikutuksia, mitä laskentamenetelmältä odotetaan.. Kustannuslaskennan teoriaa selvitettiin kirjallisuuslähteitä käyttäen silmälläpitäen juuri tätä kehitettävää laskentamenetelmää. Lisäksi esiteltiin Uimaharjun sahalla käytettävät ja laskentaan liittyvät laskenta- ja tietojärjestelmät.Nykyisin sahalla ei ole minkäänlaista menetelmää sahauseräkohtaisen tuloksen laskemiseksi. Pienillä muutoksilla sahan tietojärjestelmään ja prosessikoneisiin voidaan sahauserä kuljettaa prosessin läpi niin, että jokaisessa prosessin vaiheessa sille saadaan kohdistettua tuotantotietoa. Eri vaiheista saatua tietoa käyttämällä saadaan tarkasti määritettyä tuotteet, joita sahauserä tuotti ja paljonko tuotantoresursseja tuottamiseen kului. Laskentamalliin syötetään tuotantotietoja ja kustannustietoa ja saadaan vastaukseksi sahauserän taloudellinen tulos.Toimenpide ehdotuksena esitetään lisätutkimusta tuotantotietojen automaattisesta keräämisestä manuaalisen työn ja virheiden poistamiseksi. Suhteellisen pienillä panoksilla voidaan jokaiselle sahauserälle kerätä tuotantotiedot täysin automaattisesti. Lisäksi kehittämäni laskentamallin tilalle tulisi hankkia sovellus, joka käyttäisi paremmin hyväksi nykyisiä tietojärjestelmiä ja poistaisi manuaalisen työvaiheen laskennassa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cephalosporin C production process optimization was studied based on four experiments carried out in an agitated and aerated tank fermenter operated as a fed-batch reactor. The microorganism Cephalosporium acremonium ATCC 48272 (C-10) was cultivated in a synthetic medium containing glucose as major carbon and energy source. The additional medium contained a hydrolyzed sucrose solution as the main carbon and energy source and it was added after the glucose depletion. By manipulating the supplementary feed rate, it was possible to increase antibiotic production. A mathematical model to represent the fed-batch production process was developed. It was observed that the model was applicable under different operation conditions, showing that optimization studies can be made based on this model. (C) 1999 Elsevier B.V. Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study evaluates the potential for using different effluents for simultaneous H-2 and CH4 production in a two-stage batch fermentation process with mixed microflora. An appreciable amount of H-2 was produced from parboiled rice wastewater (23.9 mL g(-1) chemical oxygen demand [COD]) and vinasse (20.8 mL g(-1) COD), while other effluents supported CH4 generation. The amount of CH4 produced was minimum for sewage (46.3 mL g(-1) COD), followed by parboiled rice wastewater (115.5 mL g(-1) COD) and glycerol (180.1 mL g(-1) COD). The maximum amount of CH4 was observed for vinasse (255.4 mL g(-1) COD). The total energy recovery from vinasse (10.4 kJ g(-1) COD) corresponded to the maximum COD reduction (74.7 %), followed by glycerol (70.38 %, 7.20 kJ g(-1) COD), parboiled rice wastewater (63.91 %, 4.92 kJ g(-1) COD), and sewage (51.11 %, 1.85 kJ g(-1) COD). The relatively high performance of vinasse in such comparisons could be attributed to the elevated concentrations of macronutrients contained in raw vinasse. The observations are based on kinetic parameters of H-2 and CH4 production and global energy recovery of the process. These observations collectively suggest that organic-rich effluents can be deployed for energy recovery with sequential generation of H-2 and CH4.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The manufacture of copper alloy flat rolled metals involves hot and cold rolling operations, together with annealing and other secondary processes, to transform castings (mainly slabs and cakes) into such shapes as strip, plate, sheet, etc. Production is mainly to customer orders in a wide range of specifications for dimensions and properties. However, order quantities are often small and so process planning plays an important role in this industry. Much research work has been done in the past in relation to the technology of flat rolling and the details of the operations, however, there is little or no evidence of any research in the planning of processes for this type of manufacture. Practical observation in a number of rolling mills has established the type of manual process planning traditionally used in this industry. This manual approach, however, has inherent drawbacks, being particularly dependent on the individual planners who gain their knowledge over a long span of practical experience. The introduction of the retrieval CAPP approach to this industry was a first step to reduce these problems. But this could not provide a long-term answer because of the need for an experienced planner to supervise generation of any plan. It also fails to take account of the dynamic nature of the parameters involved in the planning, such as the availability of resources, operation conditions and variations in the costs. The other alternative is the use of a generative approach to planning in the rolling mill context. In this thesis, generative methods are developed for the selection of optimal routes for single orders and then for batches of orders, bearing in mind equipment restrictions, production costs and material yield. The batch order process planning involves the use of a special cluster analysis algorithm for optimal grouping of the orders. This research concentrates on cold-rolling operations. A prototype model of the proposed CAPP system, including both single order and batch order planning options, has been developed and tested on real order data in the industry. The results were satisfactory and compared very favourably with the existing manual and retrieval methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A semi-batch pyrolysis process was used to recover samples carbon fibre and glass fibre from their respective wastes. The mechanical properties of the recovered fibres were tested and compared to those of virgin fibres, showing good retention of the fibre properties. The recovered fibres were then used to prepare new LDPE composite materials with commercial and laboratory-synthesized compatibilizers. Mild oxidation of the post-pyrolysis recovered fibres and the use of different compatibilizers gave significant improvements in the mechanical properties of the LDPE composites; however some of the manufactured composites made from recovered fibres had properties similar to those made from virgin fibres.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente trabalho experimental teve como objectivos estudar a tratabilidade dum efluente lácteo utilizando a técnica de coagulação/floculação e avaliar a possibilidade de utilização do carvão activado granulado (CAG) Aquasorb 2000 como adsorvente para a remoção de compostos orgânicos presentes nos efluentes lácteos pré–tratados por coagulação/floculação, funcionando como um tratamento de polimento. No estudo da tratabilidade do efluente por coagulação/floculação investigou-se a influência de determinadas variáveis como o tipo e dose de coagulante e pH, a fim de encontrar as melhores condições operatórias. A utilização da referida técnica visou a redução do valor de concentração de alguns parâmetros: carência química de oxigénio (CQO); fósforo total e turvação, tendo sido utilizados efluentes desta indústria recolhidos em diferentes datas e após tratamento biológico, designados por A, B, C e D apresentando características diferentes. Sendo que o efluente A apresentava valores de CQO, fósforo total e turvação de 500 mg O2/L;32 mg P/L e 40 NTU respectivamente, o efluente B 1400 mg O2/L; 120 mg P/L e 80 NTU respectivamente, o efluente C 12300 mg O2/L; 87 mg P/L e 350 NTU respectivamente e o efluente D 340 mg O2/L; 33 mg P/L e 42 NTU respectivamente. Os coagulantes estudados foram hidróxido de cálcio (HC), sulfato de alumínio (SA) e tricloreto de ferro (TF). Verificou-se que o coagulante com maior eficácia nos efluentes estudados foi o TF. As maiores remoções de CQO, fósforo total e turvação, 89%, 99,9% e 99%, respectivamente, foram obtidas para o efluente C, com uma dosagem de TF de 4 g/L e com um pH entre 6 e 7. Entre os efluentes estudados este era o que apresentava valores iniciais mais elevados para qualquer um destes parâmetros. As melhores percentagens de remoção obtidas com o HC, para a CQO, fósforo total e turvação foram de 59%, 99% e 91%, respectivamente, com uma dosagem de HC de 1 g/L e com um pH entre 10 e 11,5 foram conseguidas no tratamento do efluente D, com o qual se alcançaram também as melhores remoções de CQO, fósforo total e turvação de 65%, 99% e 87%, respectivamente, quando se utilizou o coagulante SA, com uma dosagem de 2 g/L e com um pH entre 7 e 7,5. Relativamente ao volume de lamas produzido neste processo pela utilização dos diferentes coagulantes no tratamento dos efluentes referidos concluiu-se que o coagulante que gera menor volume de lamas é o HC, sendo o SA aquele que origina um maior volume. Submeteu-se posteriormente o efluente D, pré-tratado por coagulação/floculação, a um processo de adsorção em batch utilizando o CAG Aquasorb 2000, onde se conseguiu uma remoção de CQO de 48%, alcançando para este parâmetro o valor de 63 mg O2/L, nas condições operatórias que correspondem a uma massa de CAG de 12,5 g/L e um tempo de contacto de 3 horas. Quanto aos custos associados com os coagulantes, o que menores custos apresenta é o HC (150 €/ton), seguido pelo TF (250 €/ton) e por ultimo o SA (340 €/ton). Sendo que o efluente quando tratado com TF e SA é necessário uma correcção do pH do meio para que estes coagulantes actuem eficazmente, em que essa correcção de pH é realizada com hidróxido de sódio (540 €/ton). Realizaram-se ainda estudos de equilíbrio de adsorção com o carvão activado referido e o azul-de-metileno usando diferentes concentrações deste (50 mg/L; 100 mg/L e 200 mg/L) e diferentes massas de CAG (0,1g; 0,2g; 0,3g; 0,4g e 0,5g). A temperatura a que se realizaram estes ensaios foi de 28,7ºC e o volume de azul-de-metileno foi de 200 mL. Verificou-se que os melhores resultados obtidos foram para uma concentração de adsorvato de 100 mg/L. Ajustaram-se os modelos de Langmuir e Freundlich às isotérmicas obtidas tendo correlações mais elevadas para a concentração de 100 mg/L de corante (azul de metileno), sendo o modelo de Freundlich aquele que melhor se ajustou apresentando uma correlação quadrática de 0,9744 e os seguintes parâmetros Kf = 6,59 e n = 5,33, enquanto que o de Langmuir apresentou uma correlação quadrática de 0,9583 e os seguintes parâmetros qmáx = 83,3 mg/g de adsorvente e K = 20 L/mg de adsorvato.. Verificou-se que a capacidade de adsorção promovida pelo CAG, em relação ao azul-demetileno, obtida experimentalmente, 83,3 mg/g, é muito inferior à capacidade de adsorção teoricamente prevista pela ficha técnica deste carvão, 280 mg/g a uma temperatura de 25ºC, o que pode indiciar que o carvão utilizado não estaria nas melhores condições.