32 resultados para Bartonella
Resumo:
We present prevalence of Bartonella spp. for multiple cohorts of wild and captive cetaceans. One hundred and six cetaceans including 86 bottlenose dolphins (71 free-ranging, 14 captive in a facility with a dolphin experiencing debility of unknown origin, 1 stranded), 11 striped dolphins, 4 harbor porpoises, 3 Risso's dolphins, 1 dwarf sperm whale and 1 pygmy sperm whale (all stranded) were sampled. Whole blood (n = 95 live animals) and tissues (n = 15 freshly dead animals) were screened by PCR (n = 106 animals), PCR of enrichment cultures (n = 50 animals), and subcultures (n = 50 animals). Bartonella spp. were detected from 17 cetaceans, including 12 by direct extraction PCR of blood or tissues, 6 by PCR of enrichment cultures, and 4 by subculture isolation. Bartonella spp. were more commonly detected from the captive (6/14, 43%) than from free-ranging (2/71, 2.8%) bottlenose dolphins, and were commonly detected from the stranded animals (9/21, 43%; 3/11 striped dolphins, 3/4 harbor porpoises, 2/3 Risso's dolphins, 1/1 pygmy sperm whale, 0/1 dwarf sperm whale, 0/1 bottlenose dolphin). Sequencing identified a Bartonella spp. most similar to B. henselae San Antonio 2 in eight cases (4 bottlenose dolphins, 2 striped dolphins, 2 harbor porpoises), B. henselae Houston 1 in three cases (2 Risso's dolphins, 1 harbor porpoise), and untyped in six cases (4 bottlenose dolphins, 1 striped dolphin, 1 pygmy sperm whale). Although disease causation has not been established, Bartonella species were detected more commonly from cetaceans that were overtly debilitated or were cohabiting in captivity with a debilitated animal than from free-ranging animals. The detection of Bartonella spp. from cetaceans may be of pathophysiological concern.
Resumo:
The study of ecological differences among coexisting microparasites has been largely neglected, but it addresses important and unusual issues because there is no clear distinction in such cases between conventional (resource) and apparent competition. Here patterns in the population dynamics are examined for four species of Bartonella (bacterial parasites) coexisting in two wild rodent hosts, bank voles (Clethrionomys glareolus) and wood mice (Apodemus sylvaticus). Using generalized linear modeling and mixed effects models, we examine, for these four species, seasonal patterns and dependencies on host density (both direct and delayed) and, having accounted for these, any differences in prevalence between the two hosts. Whereas previous studies had failed to uncover species differences, here all four were different. Two, B. doshiae and B. taylorii, were more prevalent in wood mice, and one, B. birtlesii, was more prevalent in bank voles. B. birtlesii, B. grahamii, and B. taylorii peaked in prevalence in the fall, whereas B. doshiae peaked in spring. For B. birtlesii in bank voles, density dependence was direct, but for B. taylorii in wood mice density dependence was delayed. B. birtlesii prevalence in wood mice was related to bank vole density. The implications of these differences for species coexistence are discussed.
Resumo:
Small mammals and stray cats were trapped in two areas of North Zealand, Denmark, and their blood cultured for hemotrophic bacteria. Bacterial isolates were recovered in pure culture and subjected to 16S rDNA gene sequencing. Bartonella species were isolated from five mammalian species: B. grahamii from Microtus agrestis (field vole) and Apodemus flavicollis (yellow-necked field mouse); B. taylorii from M. agrestis, A. flavicollis and A. sylvaticus (long-tailed field mouse); B. tribocorum from A. flavicollis; R vinsonii subsp. vinsonii from M. agrestis and A. sylvaticus; and B. birtlesii from Sorex vulgaris (common shrew). In addition, two variant types of B. henselae were identified: variant I was recovered from three specimens of A. sylvaticus, and B. henselae variant 11 from I I cats; in each case this was the only B. henselae variant found. No Bartonella species was isolated from Clethrionomys glareolus (bank vole) or Micromys minutus (harvest mouse). These results suggest that B. henselae occurs in two animal reservoirs in this region, one of variant I in A. sylvaticus, which may be transmitted between mice by the tick Ixodes ricinus, and another of variant 11 in cats, which may be transmitted by the cat flea (Ctenocephalides felis). To our knowledge, this is the first report of the occurrence of B. henselae and B. tribocorum in Apodemus mice.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this study was to determine the serological and molecular prevalence of Bartonella spp. infection in a sick dog population from Brazil. At the São Paulo State University Veterinary Teaching Hospital in Botucatu, 198 consecutive dogs with clinicopathological abnormalities consistent with tick-borne infections were sampled. Antibodies to Bartonella henselae and Bartonella vinsonii subsp. berkhoffii were detected in 2.0% ( 4/197) and 1.5% ( 3/197) of the dogs, respectively. Using 16S-23S rRNA intergenic transcribed spacer ( ITS) primers, Bartonella DNA was amplified from only 1/198 blood samples. Bartonella seroreactive and/or PCR positive blood samples ( n = 8) were inoculated into a liquid pre-enrichment growth medium ( BAPGM) and subsequently sub-inoculated onto BAPGM/blood-agar plates. PCR targeting the ITS region, pap31 and rpoB genes amplified B. henselae from the blood and/or isolates of the PCR positive dog ( ITS: DQ346666; pap31 gene: DQ351240; rpoB: EF196806). B. henselae and B. vinsonii subsp. berkhoffii ( pap31: DQ906160; rpoB: EF196805) co-infection was found in one of the B. vinsonii subsp. berkhoffii seroreactive dogs. We conclude that dogs in this study population were infrequently exposed to or infected with a Bartonella species. The B. henselae and B. vinsonii subsp. berkhoffii strains identified in this study are genetically similar to strains isolated from septicemic cats, dogs, coyotes and human beings from other parts of the world. To our knowledge, these isolates provide the first Brazilian DNA sequences from these Bartonella species and the first evidence of Bartonella co-infection in dogs.
Resumo:
Wild canids are potential hosts for numerous species of Bartonella, yet little research has been done to quantify their infection rates in South America. We sought to investigate Bartonella seroprevalence in captive wild canids from 19 zoos in São Paulo and Mato Grosso states, Brazil. Blood samples were collected from 97 wild canids belonging to four different native species and three European wolves (Canis lupus). Indirect immunofluorescent antibody testing was performed to detect the presence of B. henselae, B. vinsonii subsp. berkhoffii, B. clarridgeiae, and B. rochalimae. Overall, Bartonella antibodies were detected in 11 of the canids, including five (12·8%) of 39 crab-eating foxes (Cerdocyon thous), three (11·1%) of 27 bush dogs (Speothos venaticus), two (8·7%) of 23 maned wolves (Chrysocyon brachyurus) and one (12·5%) of eight hoary foxes (Lycalopex vetulus), with titres ranging from 1:64 to 1:512. Knowing that many species of canids make excellent reservoir hosts for Bartonella, and that there is zoonotic potential for all Bartonella spp. tested for, it will be important to conduct further research in non-captive wild canids to gain an accurate understanding of Bartonella infection in free-ranging wild canids in South America.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an important cause of sudden death in young adults. On the basis of histopathological findings its pathogenesis may involve both a genetic origin and an inflammatory process. Bartonella henselae may cause endomyocarditis and was detected in myocardium from a young male who succumbed to sudden cardiac death. HYPOTHESIS: We hypothesized that chronic infection with Bartonella henselae could contribute to the pathogenesis of ARVC. METHODS: We investigated sera from 49 patients with ARVC for IgG antibodies to Bartonella henselae. In this study, 58 Swiss blood donors tested by the same method served as controls. RESULTS: Six patients with ARVC (12%) had positive (>1:256) IgG titres in the immunofluorescence test with Bartonella henselae. In contrast, only 1 elevated titre was found in 58 controls (p < or = 0.05). Interestingly, all patients with increased titres had no familial occurrence of ARVC. CONCLUSIONS: Further studies in larger patient cohorts seem justified to investigate a possible causal link between chronic Bartonella henselae and ARVC, in particular its sporadic (nonfamilial) form.
Resumo:
Molecular diagnosis of canine bartonellosis can be extremely challenging and often requires the use of an enrichment culture approach followed by PCR amplification of bacterial DNA. HYPOTHESES: (1) The use of enrichment culture with PCR will increase molecular detection of bacteremia and will expand the diversity of Bartonella species detected. (2) Serological testing for Bartonella henselae and Bartonella vinsonii subsp. berkhoffii does not correlate with documentation of bacteremia. ANIMALS: Between 2003 and 2009, 924 samples from 663 dogs were submitted to the North Carolina State University, College of Veterinary Medicine, Vector Borne Diseases Diagnostic Laboratory for diagnostic testing with the Bartonella α-Proteobacteria growth medium (BAPGM) platform. Test results and medical records of those dogs were retrospectively reviewed. METHODS: PCR amplification of Bartonella sp. DNA after extraction from patient samples was compared with PCR after BAPGM enrichment culture. Indirect immunofluorescent antibody assays, used to detect B. henselae and B. vinsonii subsp. berkhoffii antibodies, were compared with PCR. RESULTS: Sixty-one of 663 dogs were culture positive or had Bartonella DNA detected by PCR, including B. henselae (30/61), B. vinsonii subsp. berkhoffii (17/61), Bartonella koehlerae (7/61), Bartonella volans-like (2/61), and Bartonella bovis (2/61). Coinfection with more than 1 Bartonella sp. was documented in 9/61 dogs. BAPGM culture was required for PCR detection in 32/61 cases. Only 7/19 and 4/10 infected dogs tested by IFA were B. henselae and B. vinsonii subsp. berkhoffii seroreactive, respectively. CONCLUSIONS AND CLINICAL IMPORTANCE: Dogs were most often infected with B. henselae or B. vinsonii subsp. berkhoffii based on PCR and enrichment culture, coinfection was documented, and various Bartonella species were identified. Most infected dogs did not have detectable Bartonella antibodies.