999 resultados para Barium cerium titanates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pristine, W and Mn 1% doped Ba(0.6)Sr(0.4)TiO(3) epitaxial thin films grown on the LaAlO(3) substrate were deposited by pulsed laser deposition (PLD). Dielectric and ferroelectric properties were determined by the capacitance measurements and X-ray diffraction was used to determine both residual elastic strains and defect-related inhomogeneous strains-by analyzing diffraction line shifts and line broadening, respectively. We found that both elastic and inhomogeneous strains are affected by doping. This strain correlates with the change in Curie-Weiss temperature and can qualitatively explain changes in dielectric loss. To explain the experimental findings, we model the dielectric and ferroelectric properties of interest in the framework of the Landau-Ginzburg-Devonshire thermodynamic theory. As expected, an, elastic-strain contribution due to the epilayer-substrate misfit has an important influence on the free-energy. However, additional terms that correspond to the defect-related inhomogeneous strain had to be introduced to fully explain the measurements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the current article, we studied the effect of yttrium [Y3+] ions' substitution on the structure and electric behavior of barium zirconate titanate (BZT) ceramics with a general formula [Ba1-x Y 2x/3](Zr0.25Ti0.75)O3 (BYZT) with [x = 0, 0.025, 0.05] which were prepared by the solid-state reaction method. X-ray diffraction patterns indicate that these ceramics have a single phase with a perovskite-type cubic structure. Rietveld refinement data confirmed [BaO 12], [ZrO6], [TiO6], [YO6] clusters in the cubic lattice. The Y3+ ions' effects on the electric conductivity behavior of BZT ceramics as a function of temperature and frequency are described, which are based on impedance spectroscopy analyses. The complex impedance plots display a double semicircle which highlights the influences of grain and grain boundary on the ceramics. Impedance analyses showed that the resistance decreased with the increasing temperature and resulted in a negative temperature coefficient of the resistance property in all compositions. Modulus plots represent a non-Debye-type dielectric relaxation which is related to the grain and grain boundary as well as temperature-dependent electric relaxation phenomenon and an enhancement in the mobility barrier by Y3+ ions. Moreover, the electric conductivity increases with the replacement of Ba 2+ by Y3+ ions may be due to the rise in oxygen vacancies. © 2013 The Minerals, Metals & Materials Society and ASM International.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, binary perovskite (BaCexO3) were doped with praseodymium (Pr) to obtainment of the ternary material BaCexPr1-xO3. This material was synthesized by the complexation method combining EDTA/Citrate with the stoichiometric ratio of the element Praseodymium ranging from x = 0.1 to x = 0.9 in order to determine the influence of this rare earth element on the morphology and microstructure of the final powder. At first the material was synthesized based on the route proposed by literature (Santos, 2010), and then characterized by SEM and XRD, besides being refined by the Rietveld method. In the material that had lowest residual parameter, S, and lowest average size of crystal, pH variation of synthesis solution was made in order to identify the influence of this parameter on the morphology and microscopy of the final powder. The results show that addition of praseodymium did not directly influence the crystallographic and lattice parameters, keeping even the same orthorhombic structure of the binary material BaCexO3, according to Yamanaka et al (2003). Material type BaCe0,2Pr0,8O3 had lowest residual parameter (S=1.4) and lowest average size of crystallite (26.4 nm), being used as reference in the pH variation of synthesis solution for 9, 7, 5 and 3, respectively. Variation of this parameter showed that when the synthesis solution pH was decreased to below 11, there was an increase in the average size of crystals, for pH 9, about 58.3%, for pH 7 (30.3 %), for pH 2 (2.3%) and for pH 3 (42%), indicating that the value initially used and quoted by Santos (2010) was the most coherent

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Barium zirconate titanate Ba(Ti0.90Zr0.10)O3 ceramics doped with WO3 (BZT:2W) have been prepared by a traditional solid phase reaction. The effect of temperature on the structural and electrical properties was investigated. X ray diffraction data evidenced formation of secondary phases for the samples sintered at 1300oC end 1350oC while the pure phase was attained at 1200oC. A modified Curie-Weiss law was used to describe the diffuseness of a phase transition. As temperature increases, the maximum dielectric permittivity decreased. The fine-grained sample showed a 'diffuse-like' ferroelectric behavior. The dielectric permittivity reaches a maximum value (εm ~6420 at 10 kHz) for the ceramics sintered at 1200oC for 4 hours.