1000 resultados para Barents Sea


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Very large subsidence, with up to 20 km thick sediment layers, is observed in the East Barents Sea basin. Subsidence started in early Paleozoic, accelerated in Permo-Triassic times, finished during the middle Cretaceous, and was followed by moderate uplift in Cenozoic times. The observed gravity signal suggests that the East Barents Sea is at present in isostatic balance and indicates that a mass excess is required in the lithosphere to produce the observed large subsidence. Several origins have been proposed for the mass excess. We use 1-D thermokinematic modeling and 2-D isostatic density models of continental lithosphere to evaluate these competing hypotheses. The crustal density in 2-D thermokinematic models resulting from pressure-, temperature-, and composition-dependent phase change models is computed along transects crossing the East Barents Sea. The results indicate the following. (1) Extension can only explain the observed subsidence provided that a 10 km thick serpentinized mantle lens beneath the basin center is present. We conclude that this is unlikely given that this highly serpentinized layer should be formed below a sedimentary basin with more than 10 km of sediments and crust at least 10 km thick. (2) Phase changes in a compositionally homogeneous crust do not provide enough mass excess to explain the present-day basin geometry. (3) Phase change induced densification of a preexisting lower crustal gabbroic body, interpreted as a mafic magmatic underplate, can explain the basin geometry and observed gravity anomalies. The following model is proposed for the formation of the East Barents Sea basin: (1) Devonian rifting and extension related magmatism resulted in moderate thinning of the crust and a mafic underplate below the central basin area explaining initial late Paleozoic subsidence. (2) East-west shortening during the Permian and Triassic resulted in densification of the previously emplaced mafic underplated body and enhanced subsidence dramatically, explaining the present-day deep basin geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of observational data in the Barents Sea along a meridian at 33°30' E between 70°30' and 72°30' N has reported a negative correlation between El Niño/La Niña Southern Oscillation (ENSO) events and water temperature in the top 200 m: the temperature drops about 0.5 °C during warm ENSO events while during cold ENSO events the top 200 m layer of the Barents Sea is warmer. Results from 1 and 1/4-degree global NEMO models show a similar response for the whole Barents Sea. During the strong warm ENSO event in 1997–1998 an anomalous anticyclonic atmospheric circulation over the Barents Sea enhances heat loses, as well as substantially influencing the Barents Sea inflow from the North Atlantic, via changes in ocean currents. Under normal conditions along the Scandinavian peninsula there is a warm current entering the Barents Sea from the North Atlantic, however after the 1997–1998 event this current is weakened. During 1997–1998 the model annual mean temperature in the Barents Sea is decreased by about 0.8 °C, also resulting in a higher sea ice volume. In contrast during the cold ENSO events in 1999–2000 and 2007–2008, the model shows a lower sea ice volume, and higher annual mean temperatures in the upper layer of the Barents Sea of about 0.7 °C. An analysis of model data shows that the strength of the Atlantic inflow in the Barents Sea is the main cause of heat content variability, and is forced by changing pressure and winds in the North Atlantic. However, surface heat-exchange with the atmosphere provides the means by which the Barents sea heat budget relaxes to normal in the subsequent year after the ENSO events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compare six high-resolution Holocene, sediment cores along a S-N transect on the Norwegian-Svalbard continental margin from ca 60°N to 77.4°N, northern North Atlantic. Planktonic foraminifera in the cores were investigated to show the changes in upper surface and subsurface water mass distribution and properties, including summer sea-surface temperatures (SST). The cores are located below the axis of the Norwegian Current and the West Spitsbergen Current, which today transport warm Atlantic Water to the Arctic. Sediment accumulation rates are generally high at all the core sites, allowing for a temporal resolution of 10-102 years. SST is reconstructed using different types of transfer functions, resulting in very similar SST trends, with deviations of no more than +- 1.0/1.5 °C. A transfer function based on the maximum likelihood statistical approach is found to be most relevant. The reconstruction documents an abrupt change in planktonic foraminiferal faunal composition and an associated warming at the Younger Dryas-Preboreal transition. The earliest part of the Holocene was characterized by large temperature variability, including the Preboreal Oscillations and the 8.2 k event. In general, the early Holocene was characterized by SSTs similar to those of today in the south and warmer than today in the north, and a smaller S-N temperature gradient (0.23 °C/°N) compared to the present temperature gradient (0.46 °C/°N). The southern proxy records (60-69°N) were more strongly influenced by slightly cooler subsurface water probably due to the seasonality of the orbital forcing and increased stratification due to freshening. The northern records (72-77.4°N) display a millennial-scale change associated with reduced insolation and a gradual weakening of the North Atlantic thermohaline circulation (THC). The observed northwards amplification of the early Holocene warming is comparable to the pattern of recent global warming and future climate modelling, which predicts greater warming at higher latitudes. The overall trend during mid and late Holocene was a cooling in the north, stable or weak warming in the south, and a maximum S-N SST gradient of ca 0.7 °C/°N at 5000 cal. years BP. Superimposed on this trend were several abrupt temperature shifts. Four of these shifts, dated to 9000-8000, 5500-3000 and 1000 and ~400 cal. years BP, appear to be global, as they correlate with periods of global climate change. In general, there is a good correlation between the northern North Atlantic temperature records and climate records from Norway and Svalbard.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focused on the bacterial diversity associated with microbial mats of deep-sea cold seeps at the Norwegian continental margin. Study sites included the Storegga and Nyegga areas as well as the Håkon Mosby mud volcano, where the mats occurred at temperatures permanently close to the freezing point of seawater. Two visually different mat types, i.e. small gray mats and extensive white mats, were studied with the aim to determine the identity of the mat-forming sulfide oxidizers, and to investigate which environmental factors (e.g. sulfate reduction and methane oxidation rates) shown here could explain the observed diversity. Sequence data have been submitted to the EMBL database under accession No. FR847864-FR847887 (giant sulfur bacteria), No. FR827864 (Menez Gwen filament; see Supplementary Material) and No. FR875365-FR877509 (except FR875905; remaining partial sequences).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data show the survival data of Atlantic cod larvae from two different stocks, which were measured in two separate experiments in Kristineberg, Sweden in 2013 on the Western Baltic stock and in Tromsö, Norway in 2014 on the Barents Sea stock. Survival was measured as a response to ocean acidification, control tanks were kept at ambient CO2 concentrations. CO2 concentrations and feeding concentrations are also provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In September-October 1998, during Cruise 14 of R/V Akademik Fedorov to the Barents Sea, in the region of 82° N between the Spitsbergen and Novaya Zemlya archipelagos samples of snow and ice were collected within four polygons. By means of atomic absorption with an electothermal atomizer (onboard the ship) in filtered (dissolved form) and unfiltered (sum of dissolved and particulate forms) samples of snow melt and ice melt concentrations of Fe, Mn, Cu, Cr, Ni, Co, Pb, and Cd were determined in order to estimate level of potential contamination of snow and ice with these metals. Excluding data on Ni, Cd (and probably Cu) in ice that were regarded to be unsatisfactory because of probable contamination of the ice samples during drilling concentrations of all the elements in snow and ice of the northern part of the Barents Sea appeared to be close to their background values or below. An attempt to identify the main sources of metal supply to snow from the atmosphere by comparison of ratios of metal particulate form to total content in snow of the Barents Sea and the same ratios in snow samples from clean regions of Finland and from contaminated areas of the Kola Peninsula showed that aerosols in the area of the expedition were supplied into the Barents Sea atmosphere from different sources, both natural and anthropogenic.