995 resultados para Baraita of 32 rules


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part 2 precedes part 1.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and advocate basic principles for the fusion of incomplete or uncertain information items, that should apply regardless of the formalism adopted for representing pieces of information coming from several sources. This formalism can be based on sets, logic, partial orders, possibility theory, belief functions or imprecise probabilities. We propose a general notion of information item representing incomplete or uncertain information about the values of an entity of interest. It is supposed to rank such values in terms of relative plausibility, and explicitly point out impossible values. Basic issues affecting the results of the fusion process, such as relative information content and consistency of information items, as well as their mutual consistency, are discussed. For each representation setting, we present fusion rules that obey our principles, and compare them to postulates specific to the representation proposed in the past. In the crudest (Boolean) representation setting (using a set of possible values), we show that the understanding of the set in terms of most plausible values, or in terms of non-impossible ones matters for choosing a relevant fusion rule. Especially, in the latter case our principles justify the method of maximal consistent subsets, while the former is related to the fusion of logical bases. Then we consider several formal settings for incomplete or uncertain information items, where our postulates are instantiated: plausibility orderings, qualitative and quantitative possibility distributions, belief functions and convex sets of probabilities. The aim of this paper is to provide a unified picture of fusion rules across various uncertainty representation settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommender systems are widely used online to help users find other products, items etc that they may be interested in based on what is known about that user in their profile. Often however user profiles may be short on information and thus when there is not sufficient knowledge on a user it is difficult for a recommender system to make quality recommendations. This problem is often referred to as the cold-start problem. Here we investigate whether association rules can be used as a source of information to expand a user profile and thus avoid this problem, leading to improved recommendations to users. Our pilot study shows that indeed it is possible to use association rules to improve the performance of a recommender system. This we believe can lead to further work in utilising appropriate association rules to lessen the impact of the cold-start problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a big challenge to find useful associations in databases for user specific needs. The essential issue is how to provide efficient methods for describing meaningful associations and pruning false discoveries or meaningless ones. One major obstacle is the overwhelmingly large volume of discovered patterns. This paper discusses an alternative approach called multi-tier granule mining to improve frequent association mining. Rather than using patterns, it uses granules to represent knowledge implicitly contained in databases. It also uses multi-tier structures and association mappings to represent association rules in terms of granules. Consequently, association rules can be quickly accessed and meaningless association rules can be justified according to the association mappings. Moreover, the proposed structure is also an precise compression of patterns which can restore the original supports. The experimental results shows that the proposed approach is promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was a step forward to improve the performance for discovering useful knowledge – especially, association rules in this study – in databases. The thesis proposed an approach to use granules instead of patterns to represent knowledge implicitly contained in relational databases; and multi-tier structure to interpret association rules in terms of granules. Association mappings were proposed for the construction of multi-tier structure. With these tools, association rules can be quickly assessed and meaningless association rules can be justified according to the association mappings. The experimental results indicated that the proposed approach is promising.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dealing with the large amount of data resulting from association rule mining is a big challenge. The essential issue is how to provide efficient methods for summarizing and representing meaningful discovered knowledge from databases. This paper presents a new approach called multi-tier granule mining to improve the performance of association rule mining. Rather than using patterns, it uses granules to represent knowledge that is implicitly contained in relational databases. This approach also uses multi-tier structures and association mappings to interpret association rules in terms of granules. Consequently, association rules can be quickly assessed and meaningless association rules can be justified according to these association mappings. The experimental results indicate that the proposed approach is promising

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we use an experimental design to compare the performance of elicitation rules for subjective beliefs. Contrary to previous works in which elicited beliefs are compared to an objective benchmark, we consider a purely subjective belief framework (confidence in one’s own performance in a cognitive task and a perceptual task). The performance of different elicitation rules is assessed according to the accuracy of stated beliefs in predicting success. We measure this accuracy using two main factors: calibration and discrimination. For each of them, we propose two statistical indexes and we compare the rules’ performances for each measurement. The matching probability method provides more accurate beliefs in terms of discrimination, while the quadratic scoring rule reduces overconfidence and the free rule, a simple rule with no incentives, which succeeds in eliciting accurate beliefs. Nevertheless, the matching probability appears to be the best mechanism for eliciting beliefs due to its performances in terms of calibration and discrimination, but also its ability to elicit consistent beliefs across measures and across tasks, as well as its empirical and theoretical properties.