925 resultados para Ball mill
Resumo:
To understand the dynamic mechanisms of the mechanical milling process in a vibratory mill, it is necessary to determine the characteristics of the impact forces associated with the collision events. However, it is difficult to directly measure the impact force in an operating mill. This paper describes an inverse technique for the prediction of impact forces from acceleration measurements on a vibratory ball mill. The characteristics of the vibratory mill have been investigated by the modal testing technique, and its system modes have been identified. In the modelling of the system vibration response to the impact forces, two modal equations have been used to describe the modal responses. The superposition of the modal responses gives rise to the total response of the system. A method based on an optimisation approach has been developed to predict the impact forces by minimising the difference between the measured acceleration of the vibratory ball mill and the predicted acceleration from the solution of the modal equations. The predicted and measured impact forces are in good agreement. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Bond's method for ball mill scale-up only gives the mill power draw for a given duty. This method is incompatible with computer modelling and simulation techniques. It might not be applicable for the design of fine grinding ball mills and ball mills preceded by autogenous and semi-autogenous grinding mills. Model-based ball mill scale-up methods have not been validated using a wide range of full-scale circuit data. Their accuracy is therefore questionable. Some of these methods also need expensive pilot testing. A new ball mill scale-up procedure is developed which does not have these limitations. This procedure uses data from two laboratory tests to determine the parameters of a ball mill model. A set of scale-up criteria then scales-up these parameters. The procedure uses the scaled-up parameters to simulate the steady state performance of full-scale mill circuits. At the end of the simulation, the scale-up procedure gives the size distribution, the volumetric flowrate and the mass flowrate of all the streams in the circuit, and the mill power draw.
Resumo:
A new ball mill scale-up procedure is developed which uses laboratory data to predict the performance of MI-scale ball mill circuits. This procedure contains two laboratory tests. These laboratory tests give the data for the determination of the parameters of a ball mill model. A set of scale-up criteria then scales-up these parameters. The procedure uses the scaled-up parameters to simulate the steady state performance of the full-scale mill circuit. At the end of the simulation, the scale-up procedure gives the size distribution, the volumetric flowrate and the mass flowrate of all the streams in the circuit, and the mill power draw. A worked example shows how the new ball mill scale-up procedure is executed. This worked example uses laboratory data to predict the performance of a full-scale re-grind mill circuit. This circuit consists of a ball mill in closed circuit with hydrocyclones. The MI-scale ball mill has a diameter (inside liners) of 1.85m. The scale-up procedure shows that the full-scale circuit produces a product (hydrocyclone overflow) that has an 80% passing size of 80 mum. The circuit has a recirculating load of 173%. The calculated power draw of the full-scale mill is 92kW (C) 2001 Elsevier Science Ltd. All rights reserved.
Model-based procedure for scale-up of wet, overflow ball mills - Part III: Validation and discussion
Resumo:
A new ball mill scale-up procedure is developed. This procedure has been validated using seven sets of Ml-scale ball mil data. The largest ball mills in these data have diameters (inside liners) of 6.58m. The procedure can predict the 80% passing size of the circuit product to within +/-6% of the measured value, with a precision of +/-11% (one standard deviation); the re-circulating load to within +/-33% of the mass-balanced value (this error margin is within the uncertainty associated with the determination of the re-circulating load); and the mill power to within +/-5% of the measured value. This procedure is applicable for the design of ball mills which are preceded by autogenous (AG) mills, semi-autogenous (SAG) mills, crushers and flotation circuits. The new procedure is more precise and more accurate than Bond's method for ball mill scale-up. This procedure contains no efficiency correction which relates to the mill diameter. This suggests that, within the range of mill diameter studied, milling efficiency does not vary with mill diameter. This is in contrast with Bond's equation-Bond claimed that milling efficiency increases with mill diameter. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The present work reports on the preparation of Al2O3-TiO2 ceramics by high-energy ball milling and sintering, varying the molar fraction in 1:1 and 3:1. The powder mixtures were processed in a planetary Fritsch P-5 ball mill using silicon nitride balls (10 mm diameter) and vials (225 mL), rotary speed of 250 rpm and a ball-to-powder weight ratio of 5:1. Samples were collected into the vial after different milling times. The milled powders were uniaxially compacted and sintered at 1300 and 1500 degrees C for 4h. The milled and sintered materials were characterized by X-ray diffraction and electron scanning microscopy (SEM). Results indicated that the intensity of Al2O3 and TiO2 peaks were reduced for longer milling times, suggesting that nanosized particles can be achieved. The densification of Al2O3-TiO2 ceramics was higher than 98% over the relative density in samples sintered at 1500 degrees C for 4h, which presented the formation of Al2TiO5.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Peruvian carrot and cassava starches were ground in a ball mill for 4, 8, 16, and 32 h and their structural and physicochemical characteristics were determined. Results obtained from HPAEC-PAD, GPC, and amylose content indicated a breaking of hydrogen bounds and α-(1 [RIGHTWARDS ARROW] 6) linkages of the starch molecules after treatment. X-ray diffractograms showed that the milling provided a reduction in the crystalline area of the starch granules. Most of the starch granules displayed agglomeration after 4 h of milling, when observed under a scanning electron microscope, and after 16 h a shapeless mass was observed for Peruvian carrot starch. Solubility and water absorption capacity of the starches increased with an increase in the milling time, while RVA profiles showed a progressive reduction of peak, breakdown, and final viscosities, as well as the development of initial viscosity. Gelatinization temperatures and enthalpies were reduced. Prolonged ball milling accelerated the enthalpy relaxation in both starches. These results confirmed a partial gelatinization of the starches, which was 82.6% for Peruvian carrot and 65.4% for cassava starches after 32 h of milling. The Peruvian carrot starch was more affected by the ball milling because of both its lower amylose content and the defects in its crystalline structure
Resumo:
Recently, a new ternary phase was discovered in the Ti-Si-B system, located near the Ti6Si2B composition. The present study concerns the preparation of titanium alloys that contain such phase mixed with α-titanium and other intermetallic phases. High-purity powders were initially processed in a planetary ball-mill under argon atmosphere with Ti-18Si-6B and Ti-7.5Si-22.5B at. (%) initial compositions. Variation of parameters such as rotary speed, time, and ball diameters were adopted. The as-milled powders were pressureless sintered and hot pressed. Both the as-milled and sintered materials were characterized by X-ray diffraction, scanning electron microscopy and energy-dispersive spectrometry. Sintered samples have presented equilibrium structures formed mainly by the α-Ti+Ti6Si2B+Ti5Si3+TiB phases. Silicon and boron peaks disappear throughout the milling processes, as observed in the powder diffraction data. Furthermore, an iron contamination of up to 10 at. (%) is measured by X-ray spectroscopy analysis on some regions of the sintered samples. Density, hardness and tribological results for these two compositions are also presented here.
Resumo:
Using the previously described method for appearance function determination, described in Part I of this article, the breakage characterization of the main Carajas ore types was carried out. Based on such characteristics, the ball mill circuit performance was evaluated through simulations. The model described in the first part was used. The results were assessed by comparing ball mill products and cyclone overflow size distribution, as well as simulated recirculating loads. The simulations indicated the potential for processing such ore types at the Carajas grinding circuit, which until now was unknown.
Resumo:
Discharge grates play an important role in determining the performance of autogenous, semi-autogenous and grate discharge ball mills. The flow capacity (grinding capacity) of these mills is strongly influenced by the discharge grate design-open area and position of apertures, as well as the performance of the pulp lifters. As mill sizes have progressively increased and closed-circuiting has become more popular the importance of grate and pulp lifter design has grown. Unfortunately very few studies have concentrated on this aspect of mill performance. To remedy this a series of laboratory and pilot-scale tests were undertaken to study both the performance of grates on their own and in conjunction with pulp lifters. In this first paper of a two-part series the results from the grate-only experiments are presented and discussed, whilst the performance of the grate-pulp-lifter system is covered in the second paper. The results from the grate-only experiments have shown that the build-up of slurry (hold-up) inside the mill starts from the shoulder of the charge, while the toe position of the slurry progressively moves towards the toe of the charge with increasing flowrate. Besides grate design (open area and position of apertures), charge volume and mill speed were also found to have a strong influence on mill hold-up and interact with grate design variables. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Two goals were pursued in this research: first, to evaluate statistically some effects of sample preparation and instrument geometry on reproducibility of X-ray diffraction intensity data; and second, to develop a procedure for finding minimum peak and background counting times for a desired level of accuracy. The ratio of calcite to dolomite in limestones was determined in trials. Ultra-fine wet grinding of the limestone in porcelain impact type ball mill gave most consistent X-ray results, but caused considerable line broadening, and peaks were best measured on an area count basis. Sample spinning reduced variance about one third, and a coarse beam-medium detector slit arrangement was found to be best. An equation is developed relating coefficient of variation of a count ratio to peak and background counts. By use of the equation or graphs the minimum coefficient of variation is predicted from one fast scan, and the number and optimum arrangement of additional counting periods to reduce variation to a desired limit may be obtained. The calculated coefficient is the maximum which may be attributed to the counting statistic but does not include experimental deviations.
Resumo:
Luokittuminen erilaisine mekanismeineen aiheuttaa yleisesti ongelmia, kun on kysymyksessä kiintoaineen väliaikainenkin varastointi siilossa. Sitä voidaan vähentää kiintoaineiden, prosessin ja laitesuunnittelun muutoksilla. Tässä työssä tutkittiin mahdollisuuksia vähentää ilmeniitin luokittumista sen jauhatuspiirin ilmakiertoa optimoimalla. Suljetun kuivajauhatuspiirin keskeisimmäksi laitteeksi voitaisiin ajatella siinä oleva luokitin, joka voi olla esim. sykloni. Tässä piirissä tapahtuva kiintoaineen liikkuminen voidaan saada aikaiseksi esim. pneumaattisella kuljetuksella. Ilmeniitin jauhatus tapahtuu suljetussa kuivajauhatuspiirissä, jonka ajavana voimana on siinä oleva ilmakierto. Piirin oleellisia laitteita ovat kuulamylly, luokitin, erotussykloni ja pölykaappi sekä kiertoilma- ja poistoilmapuhaltimet. Ilmakierron optimointia varten suoritettiin kahden vastaavan jauhatuspiirin ainetasemääritykset. Lisäksi määritettiin yhden isomman piirin perustila. Jauhatuspiirien ainetasemäärityksissä määritettiin niiden massa- ja ilmavirrat sekä kiertokuorma ja luokittimen erotusterävyys, kuten myös ilmeniitin hiukkaskokojakaumat. Perustilamittauksissa määritettiin ainoastaan piirin ilmavirrat ja ilmeniitin hiukkaskokojakaumat. Optimointimittauksissa pienennettiin pikkumyllypiirin ilmamäärät vastaamaan kutakuinkin vastaavan toisen piirin määriä. Tällä yritettiin selvittää näiden toisiaan vastaavien piirien ilmamäärien ja varsinkin kiertokuormien eroavuutta. Tämä ilmamäärien pienentäminen ei tuottanut mainittavampaa muutosta piirin ainetaseisiin, joten voitaneen todeta, että piirin ilmamääriä pienentämällä saadaan aikaiseksi säästöjä, lähinnä kiertoilmapuhaltimen tehon alennuksen kautta.