22 resultados para Bainite
Resumo:
Convergent beam Kikuchi diffraction was used to accurately determine the orientation relationships (ORs) between austenite and martensite, and between austenite and granular bainite in two Fe-Ni-Mn-C alloys. Both martensite and granular bainite have the same crystallographic characteristics with the OR: (111)(A)parallel to(101)(F), [1 (1) over bar0](A) 2.5degrees +/- 2degrees from [1 (1) over bar(1) over bar](B).
Resumo:
Mode of access: Internet.
Resumo:
The mechanism of bainite growth has been investigated using in situ transmission electron microscopy observations. It was found that, in a number of alloys studied, a bainitic embryo is made of basic transformation units. These units are either a group of stacking faults or, in two dimensions, a series of parallelograms of different sizes. Thickening/widening of the bainite embryo takes place through shear along the stacking fault planes or twining planes. The bainite embryo is elongated by the formation of new transformation units at both tips of the bainite plate. The three-dimensional morphology of bainite is a convex tens-like lath. It is believed that the bainite embryo grows by shearing, which is controlled by the diffusion of solute atoms during the transformation. As the growth rate is much lower than that of martensite, it is therefore detectable. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The convergent beam Kikuchi line diffraction technique has been used to accurately determine the orientation relationships between bainitic ferrite and retained austenite in a hard bainitic steel. A reproducible orientation relationship has been uniquely observed for both the upper and lower bainite. It is [GRAPHICS] However, the habit plane of upper bainite is different from that of lower bainite. The former has habit plane that is either within 5 degrees of (221)(A) or of (259)(A). The latter only corresponds with a habit plane that is within 5 degrees of (259)(A). The determined orientation relationship is completely consistent with reported results determined using the same technique with an accuracy of +/- 0.5 degrees in lath martensite in an Fe-20 wt.% Ni-6 wt.% Mn alloy and in a low carbon low alloy steel. It also agrees well with the orientation relationship between granular bainite and austenite in an Fe-19 wt.% Ni-3.5 wt.% Mn-0.15 wt.% C steel. Hence it is believed that, at least from a crystallographic point view, the bainite transformation has the characteristics of martensitic transformation. (c) 2006 Elsevier B.V. All rights reserved.
Development of an optimized methodology for tensile testing of carbon steels in hydrogen environment
Resumo:
The study was performed at OCAS, the Steel Research Centre of ArcelorMittal for the Industry market. The major aim of this research was to obtain an optimized tensile testing methodology with in-situ H-charging to reveal the hydrogen embrittlement in various high strength steels. The second aim of this study has been the mechanical characterization of the hydrogen effect on hight strength carbon steels with varying microstructure, i.e. ferrite-martensite and ferrite-bainite grades. The optimal parameters for H-charging - which influence the tensile test results (sample geometry type of electrolyte, charging methods effect of steel type, etc.) - were defined and applied to Slow Strain Rate testing, Incremental Step Loading and Constant Load Testing. To better understand the initiation and propagation of cracks during tensile testing with in-situ H-charging, and to make the correlation with crystallographic orientation, some materials have been analyzed in the SEM in combination with the EBSD technique. The introduction of a notch on the tensile samples permits to reach a significantly improved reproducibility of the results. Comparing the various steel grades reveals that Dual Phase (ferrite-martensite) steels are more sensitive to hydrogen induced cracking than the FB (ferritic-bainitic) ones. This higher sensitivity to hydrogen was found back in the reduced failure times, increased creep rates and enhanced crack initiation (SEM) for the Dual Phase steels in comparison with the FB steels.
Resumo:
Opinnäytetyö on osa Arctic Materials Technologies Development -projektia, jonka tavoitteena on kehittää perusteita arktisten alueiden sovelluksiin suunnittelun ja valmistuksen kannalta. Arktisella alueella sijaitsee useita potentiaalisia öljy- ja maakaasuesiintymiä, joiden hyödyn-täminen tulee vuosi vuodelta kannattavammaksi ilmaston lämpenemisestä johtuvan merijään heikkenemisen vuoksi. Alin suunnittelulämpötila arktisilla alueilla on -60 °C, mikä aiheuttaa haasteita sekä materiaalinvalinnalle että hitsaukselle. Ferriittisillä teräksillä esiintyy lämpötilasta riippuvaa sitkeyden vaihtelua, jota kutsutaan transi-tiokäyttäytymiseksi. Lämpötilan laskiessa teräksen iskusitkeys sekä murtumissitkeys laske-vat. Arktisissa sovelluskohteissa käytetään yleisesti niukkaseosteisia, mikroseostettuja hie-noraeteräksiä, joille on ominaista erinomaiset sitkeys-, lujuus- sekä hitsattavuusominaisuudet vaativissakin olosuhteissa. Lujat termomekaanisesti valssatut ja nuorrutetut hienoraeteräkset kattavat myötölujuusluokat 355…700 MPa. Tutkimuksissa on saatu vaihtelevia tuloksia ma-teriaalien isku- ja murtumissitkeydestä -60 °C:ssa. Erityisesti sitkeysominaisuudet hitsiaineen ja muutosvyöhykkeen alueiden välillä ovat vaihtelevia. Pienemmällä lämmöntuonnilla ja seostetuilla lisäaineilla saavutetaan kuitenkin pääsääntöisesti parempia sitkeysarvoja. Asiku-laarinen ferriitti sekä alabainiitti ovat toivottavia mikrorakenteita liitoksessa, niiden pienen raekoon johdosta.
Resumo:
In this work five methods of heat treatments are investigated in order to obtained convenient volume fractions of ferrite, bainite, martensite and retained austenite, starting with a low carbon steel and seeking the distinction of the phases, through optical microscopy. Specific chemical etching is improved. The results in tensile and fatigue tests were accomplished and the results were related with the microstructural parameters. The results show that the mechanical properties are closely related with the phases, grains size and the phases morphology. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
This paper discusses the formation of microstructures with different volume fractions, as an outcome of a specific heat treatment, with the following phases: ferrite, martensite, bainite and retained austenite. For the microstructure characterization it is developed a chemical etching that allows to distinguish the phases by optical microscopy. The evaluation of the mechanical properties is done based on the results of tensile and fatigue tests. The experimental results show that appropriate heat treatments can contribute to a significant improvement in the mechanical properties of the steel. In this process it is essential to control the fraction volume, morphology of the phases, and grain size.
Resumo:
Thermal transformations on microalloyed steels can produce multiphase microstructures with different amounts of ferrite, martensite, bainite and retained austenite. These different phases, with distinct morphologies, are determinant of the mechanical behavior of the steel and can, for instance, affect the crack path or promote crack shielding, thus resulting in changes on its propagation rate under cyclic loading. The aim of the present work is to evaluate the effects of microstructure on the tensile strength and fatigue crack growth (FCG) behaviour of a 0.08%C-1,5%Mn (wt. pct.) microalloyed steel, recently developed by a Brazilian steel maker under the designation of RD480. This steel is being considered as a promising alternative to replace low carbon steel in wheel components for the automotive industry. Various microstructural conditions were obtained by means of heat treatments followed by water quench, in which the material samples were kept at the temperatures of 800, 950 and 1200 °C. In order to describe the FCG behavior, two models were tested: the conventional Paris equation and a new exponential equation developed for materials showing non-linear FCG behavior. The results allowed correlating the tensile properties and crack growth resistance to the microstructural features. It is also shown that the Region II FCG curves of the dual and multiphase microstructural conditions present crack growth transitions that are better modeled by dividing them in two parts. The fracture surfaces of the fatigued samples were observed via scanning electron microscopy in order to reveal the fracture mechanisms presented by the various material conditions. © 2010 Published by Elsevier Ltd.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)