975 resultados para Bacterial Wilt
Resumo:
The use of organic matter that improves the physical, chemical and biological soil properties has been studied as an inducer of suppressiveness to soilborne plant pathogens. The objective of this work was to evaluate the effect of different sources and concentrations of organic matter on tomato bacterial wilt control. Two commercially available organic composts and freshly cut aerial parts of pigeon pea (Cajanus cajan) and crotalaria (Crotalaria juncea) were incorporated, in concentrations of 10, 20 and 30 % (v/v), into soil infested with Ralstonia solanacearum. The soil with the fresh organic matter of pigeon pea and crotalaria was incubated for 30 and 60 days before planting. Tomato seedlings of cv. Santa Clara were transplanted into polyethylene bags with 3 kg of the planting substrate (infested soil + organic matter). The wilting symptoms and percentage of flowering plants were evaluated for 45 days. All evaluated concentrations with incorporation and incubation for 30 days of aerial parts of pigeon pea and crotalaria controlled 100% tomato bacterial wilt. With 60 days of incubation, only the 10 % concentration of pigeon pea and crotalaria did not control the disease. These results suggest that soil incorporation of fresh aerial parts of pigeon pea and crotalaria is an effective method for bacterial wilt control.
Resumo:
The objective of this study was to evaluate the effect of incorporation of neem (Azadirachta indica) leaves into the soil for controlling bacterial wilt of tomato caused by Ralstonia solanacearum. The experiment was conducted in a greenhouse of the State University of Maranhao (Brazil). Dry and fresh neem leaves were incorporated in the soil in different amounts (0, 20, 40, 60, 80 and 100 g) and kept in it for different periods of time (0, 15, 30, 45 and 60 days). After each of these periods, seedlings inoculated with R. solanacearum were transplanted in the amended soil. Results showed positive effects in the disease control by incorporating neem leaves, with a reduction of wilting symptoms up to 100% with dry leaves and 78% with fresh leaves.
Resumo:
Perimeter trap cropping (PTC) involves planting one or more rows of a cucurbit crop that is highly attractive to cucumber beetles around the border of a main cucurbit cash crop that is less attractive to the beetles. Cucumber beetles attempting to migrate into the field are concentrated in the relatively more attractive border crop, where they can be controlled by insecticides. In New England, perimeter trap cropping using Blue Hubbard squash as the border crop around pumpkin, cucumber, or butternut squash controlled cucumber beetle/bacterial wilt with as few as one border spray of insecticide. This strategy reduced insecticide use on the main crop by up to 94 percent, nearly eliminating sprays on the main cash crop. In on-farm trials, 8 of 10 Massachusetts growers found that using perimeter trap cropping saved them money. The same tactic also effectively managed cucumber beetles on muskmelon and squash in Oklahoma.
Resumo:
Susceptible cucurbit crops are difficult to grow in Iowa because of bacterial wilt, caused by Erwinia tracheiphila. Striped and spotted cucumber beetles transmit bacterial wilt. Other insect pests such as squash vine borer and squash bugs may also have an economic impact on yield, particularly in squash.
Resumo:
Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease of banana and brown rot of potato. Since the last R. solanacearum pathogen profile was published 10 years ago, studies concerning this plant pathogen have taken a genomic and post-genomic direction. This was pioneered by the first sequenced and annotated genome for a major plant bacterial pathogen and followed by many more genomes in subsequent years. All molecular features studied now have a genomic flavour. In the future, this will help in connecting the classical field of pathology and diversity studies with the gene content of specific strains. In this review, we summarize the recent research on this bacterial pathogen, including strain classification, host range, pathogenicity determinants, regulation of virulence genes, type III effector repertoire, effector-triggered immunity, plant signalling in response to R. solanacearum, as well as a review of different new pathosystems.
Resumo:
Evaluation of two semi-selective media to detect Curtobacterium flaccumfaciens pv. flaccumfaciens in bean seeds This study aimed to compare the effectiveness of the semi-selective MSCFF and modified CNS culture media in detecting Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) in bean seeds, using the streak and spread plate techniques. Four 500 g subsamples, obtained from two samples of bean seeds, were immersed in 600 mL of sterile distilled water for 18 h at 5 degrees C. Suspensions were picked and transferred to plates with both culture media. Plates were then incubated at 28 degrees C, and bacterial growth on both media was evaluated 72 and 144 hours later, compared to the growth of a Cff reference strain. Both media revealed the presence of Cff colonies. Typical colonies were isolated for PCR analyses and pathogenicity tests on tobacco leaves. A characteristic Cff growth on MSCFF medium was observed for the seed samples, for the two plate techniques used, in both evaluations. On the modified CNS culture medium, the bacterial growth was only detected in seed samples after 144 hours of incubation, regardless of the plate technique used. The results showed Cff grew faster on the MSCFF semi-selective culture medium. Bacterial isolates tested were identified as Cff by both PCR analyses and a positive tobacco hypersensitivity reaction.
Resumo:
Rapid and sensitive polymerase chain reaction (PCR) methods ape described for determination of the two 16 S rDNA subgroups of Ralstonia solanacearum, the causal agent of bacterial wilt. A third subgroup consisting of Indonesian R. solanacearum isolates belonging to Division II, the blood disease bacterium and Pseudomonas syzygii can also be identified. Primers were designed to sequences within R, solanacearum 16 S rDNA (equivalent to Escherichia coli 16 S rDNA positions 74-97, 455-475, 1454-1474), and the internal transcribed spacer region between the 16 S and 23 S rDNA genes. Different combinations of forward and reverse primers allowed selective PCR amplification of (a) R. solanacearum Division I (biovars 3, 4 and 5), (b) Division TI (biovars 1, N2, and 2) including the blood disease bacterium and P. syzygii, or (c) amplification of Division II only except for five biovar 1, 2 or N2 isolates of R. solanacearum from Indonesia, P. syzygii and the BDB. A total of 104 R. solanacearum, 14 blood disease bacterium and 10 P. syzygii isolates were tested. Simultaneous detection of species and subdivision was achieved by designing a multiplex PCR test in which a 288-base pair (bp) band is produced by all R. solanacearum isolates, and an additional 409-bp band in Division I strains.
Resumo:
R. solanacearum was ranked in a recent survey the second most important bacterial plant pathogen, following the widely used research model Pseudomonas syringae (Mansfield et al., 2012). The main reason is that bacterial wilt caused by R. solanacearum is the world"s most devastating bacterial plant disease (http://faostat.fao.org), threatening food safety in tropical and subtropical agriculture, especially in China, Bangladesh, Bolivia and Uganda (Martin and French, 1985). This is due to the unusually wide host range of the bacterium, its high persistence and because resistant crop varieties are unavailable. In addition, R. solanacearum has been established as a model bacterium for plant pathology thanks to pioneering molecular and genomic studies (Boucher et al., 1985; Cunnac et al., 2004b; Mukaihara et al., 2010; Occhialini et al., 2005; Salanoubat et al., 2002). As for many bacterial pathogens, the main virulence determinant in R. solanacearum is the type III secretion system (T3SS) (Boucher et al., 1994), which injects a number of effector proteins into plant cells causing disease in hosts or an hypersensitive response in resistant plants. In this article we discuss the current state in the study of the R. solanacearum T3SS, stressing the latest findings and future perspectives.
Resumo:
We describe here the construction of a delivery system for stable and directed insertion of gene constructs in a permissive chromosomal site of the bacterial wilt pathogen Ralstonia solanacearum. The system consists of a collection of suicide vectors the Ralstonia chromosome (pRC) series that carry an integration element flanked by transcription terminators and two sequences of homology to the chromosome of strain GMI1000, where the integration element is inserted through a double recombination event. Unique restriction enzyme sites and a GATEWAY cassette enable cloning of any promoter::gene combination in the integration element. Variants endowed with different selectable antibiotic resistance genes and promoter::gene combinations are described. We show that the system can be readily used in GMI1000 and adapted to other R. solanacearum strains using an accessory plasmid. We prove that the pRC system can be employed to complement a deletion mutation with a single copy of the native gene, and to measure transcription of selected promoters in monocopy both in vitro and in planta. Finally, the system has been used to purify and study secretion type III effectors. These novel genetic tools will be particularly useful for the construction of recombinant bacteria that maintain inserted genes or reporter fusions in competitive situations (i.e., during plant infection).
Resumo:
The objectives of this study were to evaluate the progress of Ralstonia solanacearum bacterial potato wilt biovar 2 (race 3) in 14 potato (Solanum tuberosum L.) cultivars or clones, the resistance of potato clone MB 03 (selected in Brasília, Brazil) to race 1 of R. solanacearum, and the occurrence of the pathogen in tubers harvested from asymptomatic potato plants. During the spring (September to the end of November in the southern hemisphere) of 1999 and 2000, 14 cultivars or clones were grown in a field naturally infested with R. solanacearum biovar 2, in Caxias do Sul, RS. The number of wilted potato plants was recorded each week and a disease progress curve plotted, the resistance of the potato genotypes to bacterial wilt being evaluated by determining the area under the curve. Various models were evaluated to fit the curves, with the logistic model being the best fit. At the end of each growing season tubers produced by asymptomatic plants were harvested and stored until budding and then tested for the presence of R. solanacearum. Cultivar Cruza 148 and clone MB 03 were the most resistant but both showed tubers with latent infections. The epidemiological implications of the incidence of R. solanacearum biovar 2 (race 3) in potato crops, as well as the resistance of certain genotypes that may harbor latent infections, are important aspects to be considered in the integrated management of bacterial wilt.
Resumo:
The objective of this research was to evaluate nitrogen, phosforus, potassium, calcium, magnesium, and sulfur contents on shoot dry matter of bean plants cultivars IAC Carioca Arua, IAC Carioca Pyata, IAC Carioca Akyta (resistant to the bacterial wilt), IAC Carioca, and Perola (susceptible to the bacterial wilt) inoculated or not with one isolate of Curtobacterium flaccumfaciens pv. flaccumfaciens. It was observed that all cultivars infected by C. flaccumfaciens pv. flaccumfaciens showed reduction of shoot dry matter and macronutrient contents. However, resistant cultivars had a lower reduction of nitrogen, phosforus, potassium, calcium, and magnesium contents than bacterial wilt suceptible cultivars.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)