913 resultados para Bacillus anthracis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacillus anthracis can be identified by detecting virulence factor genes located on two plasmids, pXO1 and pXO2. Combining multiplex PCR with arrayed anchored primer PCR and biotin-avidin alkaline phosphatase indicator system, we developed a qualitative DNA chip method for characterization of B. anthracis, and simultaneous confirmation of the species identity independent of plasmid contents. The assay amplifies pag gene (in pXO1), cap gene (in pXO2) and Ba813 gene (a B. anthracis specific chromosomal marker), and the results were indicated by an easy-to-read profile based on the color reaction of alkaline phosphatase. About 1 pg of specific DNA fragments on the chip wells could be detected after PCR. With the proposed method, the avirulent (pXO1(+)/2(-), pXO1(-)/2(+) and pXO1(-)/2(-)) strains of B. anthracis and distinguished 'anthrax-like' strains from other B. cereus group bacteria were unambiguously identified, while the genera other than Bacillus gave no positive signal. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have confirmed the key role of Bacillus anthracis protective antigen (PA) in the US and UK human anthrax vaccines. However, given the tripartite nature of the toxin, other components, including lethal factor (LF), are also likely to contribute to protection. We examined the antibody and T cell responses to PA and LF in human volunteers immunized with the UK anthrax vaccine (AVP). Individual LF domains were assessed for immunogenicity in mice when given alone or with PA. Based on the results obtained, a novel fusion protein comprising D1 of LF and the host cell-binding domain of PA (D4) was assessed for protective efficacy. Murine protection studies demonstrated that both full-length LF and D1 of LF conferred complete protection against a lethal intraperitoneal challenge with B. anthracis STI spores. Subsequent studies with the LFD1-PAD4 fusion protein showed a similar level of protection. LF is immunogenic in humans and is likely to contribute to the protection stimulated by AVP. A single vaccine comprising protective regions from LF and PA would simplify production and confer a broader spectrum of protection than that seen with PA alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis "infectome." These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from the same study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthrax is an endemic infection in many countries, particularly in the developing world. The causative agent, Bacillus anthracis, mediates disease through the secretion of binary exotoxins. Until recently, research into adaptive immunity targeting this bacterial pathogen has largely focused on the humoral response to these toxins. There is, however, growing recognition that cellular immune responses involving IFNγ producing CD4+ T cells also contribute significantly to a protective memory response. An established concept in adaptive immunity to infection is that during infection of host cells, new microbial epitopes may be revealed, leading to immune recognition of so called 'cryptic' or 'subdominant' epitopes. We analyzed the response to both cryptic and immunodominant T cell epitopes derived from the toxin component lethal factor and presented by a range of HLA-DR alleles. Using IFNγ-ELISpot assays we characterized epitopes that elicited a response following immunization with synthetic peptide and the whole protein and tested their capacities to bind purified HLA-DR molecules in vitro. We found that DR1 transgenics demonstrated T cell responses to a greater number of domain III cryptic epitopes than other HLA-DR transgenics, and that this pattern was repeated with the immunodominant epitopes, as a greater proportion of these epitopes induced a T cell response when presented within the context of the whole protein. Immunodominant epitopes LF457-476 and LF467-487 were found to induce a T cell response to the peptide, as well as to the whole native LF protein in DR1 and DR15, but not in DR4 transgenics. The analysis of Domain I revealed the presence of several unique cryptic epitopes all of which showed a strong to moderate relative binding affinity to HLA-DR4 molecules. However, none of the cryptic epitopes from either domain III or I displayed notably high binding affinities across all HLA-DR alleles assayed. These responses were influenced by the specific HLA alleles presenting the peptide, and imply that construction of future epitope string vaccines which are immunogenic across a wide range of HLA alleles could benefit from a combination of both cryptic and immunodominant anthrax epitopes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacillus anthracis, the etiological agent of anthrax, manifests a particular bimodal lifestyle. This bacterial species alternates between short replication phases of 20-40 generations that strictly require infection of the host, normally causing death, interrupted by relatively long, mostly dormant phases as spores in the environment. Hence, the B. anthracis genome is highly homogeneous. This feature and the fact that strains from nearly all parts of the world have been analysed for canonical single nucleotide polymorphisms (canSNPs) and variable number tandem repeats (VNTRs) has allowed the development of molecular epidemiological and molecular clock models to estimate the age of major diversifications in the evolution of B. anthracis and to trace the global spread of this pathogen, which was mostly promoted by movement of domestic cattle with settlers and by international trade of contaminated animal products. From a taxonomic and phylogenetic point of view, B. anthracis is a member of the Bacillus cereus group. The differentiation of B. anthracis from B. cereus sensu strict, solely based on chromosomal markers, is difficult. However, differences in pathogenicity clearly differentiate B. anthracis from B. cereus and are marked by the strict presence of virulence genes located on the two virulence plasmids pXO1 and pXO2, which both are required by the bacterium to cause anthrax. Conversely, anthrax-like symptoms can also be caused by organisms with chromosomal features that are more closely related to B. cereus, but which carry these virulence genes on two plasmids that largely resemble the B. anthracis virulence plasmids. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bovine Bacillus anthracis isolates from Cameroon were genetically characterized. They showed a strong homogeneity, and they belong, together with strains from Chad, to cluster A beta, which appears to be predominant in western Africa. However, one strain that belongs to a newly defined clade (D) and cluster (D1) is penicillin resistant and shows certain phenotypes typical of Bacillus cereus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surfaces of Bacillus anthracis endospores expose a pentasaccharide containing the monosaccharide anthrose, which has been considered for use as a vaccine or target for specific detection of the spores. In this study B. anthracis strains isolated from cattle carcasses in African countries where anthrax is endemic were tested for their cross-reactivity with monoclonal antibodies (MAbs) specific for anthrose-containing oligosaccharides. Unexpectedly, none of the isolates collected in Chad, Cameroon, and Mali were recognized by the MAbs. Sequencing of the four-gene operon encoding anthrose biosynthetic enzymes revealed the presence of premature stop codons in the aminotransferase and glycosyltransferase genes in all isolates from Chad, Cameroon, and Mali. Both immunological and genetic findings suggest that the West African isolates are unable to produce anthrose. The anthrose-deficient strains from West Africa belong to a particular genetic lineage. Immunization of cattle in Chad with a locally produced vaccine based on anthrose-positive spores of the B. anthracis strain Sterne elicited an anti-carbohydrate IgG response specific for a synthetic anthrose-containing tetrasaccharide as demonstrated by glycan microarray analysis. Competition immunoblots with synthetic pentasaccharide derivatives suggested an immunodominant role of the anthrose-containing carbohydrate in cattle. In West Africa anthrax is highly endemic. Massive vaccination of livestock in this area has taken place over long periods of time using spores of the anthrose-positive vaccine strain Sterne. The spread of anthrose-deficient strains in this region may represent an escape strategy of B. anthracis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A real-time polymerase chain reaction (PCR) assay was developed for rapid identification of Bacillus anthracis in environmental samples. These samples often harbor Bacillus cereus bacteria closely related to B. anthracis, which may hinder its specific identification by resulting in false positive signals. The assay consists of two duplex real-time PCR: the first PCR allows amplification of a sequence specific of the B. cereus group (B. anthracis, B. cereus, Bacillus thuringiensis, Bacillus weihenstephanensis, Bacillus pseudomycoides, and Bacillus mycoides) within the phosphoenolpyruvate/sugar phosphotransferase system I gene and a B. anthracis specific single nucleotide polymorphism within the adenylosuccinate synthetase gene. The second real-time PCR assay targets the lethal factor gene from virulence plasmid pXO1 and the capsule synthesis gene from virulence plasmid pXO2. Specificity of the assay is enhanced by the use of minor groove binding probes and/or locked nucleic acids probes. The assay was validated on 304 bacterial strains including 37 B. anthracis, 67 B. cereus group, 54 strains of non-cereus group Bacillus, and 146 Gram-positive and Gram-negative bacteria strains. The assay was performed on various environmental samples spiked with B. anthracis or B. cereus spores. The assay allowed an accurate identification of B. anthracis in environmental samples. This study provides a rapid and reliable method for improving rapid identification of B. anthracis in field operational conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We genotyped 15 Bacillus anthracis isolates from Chad, Africa, using multiple-locus variable-number tandem repeat analysis and three additional direct-repeat markers. We identified two unique genotypes that represent a novel genetic lineage in the A cluster. Chadian isolates were susceptible to 11 antibiotics and free of 94 antibiotic resistance genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: Bacillus anthracis strains of various origins were analysed with the view to describe intrinsic and persistent structural components of the Bacillus collagen-like protein of anthracis glycoprotein associated anthrose containing tetrasaccharide in the exosporium. METHODS AND RESULTS: The tetrasaccharide consists of three rhamnose residues and an unique monosaccharide--anthrose. As anthrose was not found in spores of related strains of bacteria, we envisioned the detection of B. anthracis spores based on antibodies against anthrose-containing polysaccharides. Carbohydrate-protein conjugates containing the synthetic tetrasaccharide, an anthrose-rhamnose disaccharide or anthrose alone were employed to immunize mice. All three formulations were immunogenic and elicited IgG responses with different fine specificities. All sera and monoclonal antibodies derived from tetrasaccharide immunized mice cross-reacted not only with spore lysates of a panel of virulent B. anthracis strains, but also with some of the B. cereus strains tested. CONCLUSIONS: Our results demonstrate that antibodies to synthetic carbohydrates are useful tools for epitope analyses of complex carbohydrate antigens and for the detection of particular target structures in biological specimens. SIGNIFICANCE AND IMPACT OF THE STUDY: Although not strictly specific for B. anthracis spores, antibodies against the tetrasaccharide may have potential as immuno-capturing components for a highly sensitive spore detection system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacillus anthracis, an organism ubiquitous in the soil and the causative agent of anthrax, utilizes multiple mechanisms to regulate secreted factors; one example is the activity of secreted proteases. One of the most abundant proteins in the culture supernates of B. anthracis is the Immune Inhibitor A1 (InhA1) protease. Here, I demonstrate that InhA1 modulates the abundance of approximately half of the proteins secreted into the culture supernates, including substrates that are known to contribute to the ability of the organism to cause virulence. For example, InhA1 cleaves the anthrax toxin proteins, PA, LF, and EF. InhA1 also targets a number of additional proteases, including Npr599, contributing to a complex proteolytic regulatory cascade with far-reaching affects on the secretome. Using an intra-tracheal mouse model of infection, I found that an inhA-null strain is attenuated in relation to the parent strain. The data indicate that reduced virulence of the inhA mutant strain may be the result of toxin protein deregulation, decreased association with macrophages, and/or the inability to degrade host antimicrobial peptides. Given the significant modulation of the secretome by InhA1, it is likely that expression of the protease is tightly regulated. To test this I examined inhA1 transcript and protein levels in the parent and various isogenic mutant strains and found that InhA1 expression is regulated by several mechanisms. First, the steady state levels of inhA1 transcript are controlled by the regulatory protein SinR, which inhibits inhA1 expression. Second, InhA1 abundance is inversely proportional to the SinR-regulated protease camelysin, indicating the post-transcriptional regulation of InhA1 by camelysin. Third, InhA1 activity is dependent on a conserved zinc binding motif, suggesting that zinc availability regulates InhA1 activity. The convergence of these regulatory mechanisms signifies the importance of tight regulation of InhA1 activity, activity that substantially affects how B. anthracis interacts with its environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyzed and compared strains of Bacillus anthracis isolated from husbandry and industrial anthrax cases in Switzerland between 1952 and 1981 with published data using multiple-locus variable-number tandem repeat analysis. Strains isolated from autochthonous cases of anthrax in cattle belong to genotype B2, together with strains from continental Europe, while human B. anthracis strains clustered with genotype A4. These strains could be traced back to outbreaks of human anthrax that occurred between 1978 and 1981 in a factory processing cashmere wool from the Indian subcontinent. We interpret the worldwide occurrence of B. anthracis strains of cluster A4 to be due to the extensive global trade of untreated cashmere wool during the last century.