6 resultados para BUTENES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic active phase (CAP) of a novel liquid catalyst for isobutane alkylation with butenes was investigated, the composition of the CAP was analysized, The components of the catalytic active phase were separated and examined by the methods of FTIR, UV and NMR etc., On the basis of these results, a reaction mechanism based on the formation of protonated heteropolyacid as an intial stage in the isobutane alkylation with butenes was postulated, which is in agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel liquid acid catalyst, composed of heteropolyacid and acetic acid for the alkylation of isobutane with butenes is reported. The conditions for the formation of catalytic active phase as well as its catalytic behaviors in alkylation of isobutane with butenes have been studied. It was found that acetic acid, as a solvent, exerts a synergistic effect on the acid strength of heteropolyacid, and the contents of crystal water in HPAs have influence over the formation of active phase and the catalytic activity. This novel catalyst is comparable to the sulfuric acid in catalytic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HSAPO-34 molecular sieve was employed in chloromethane conversion and showed high performance in activity and selectivity in production of light olefins. Our detailed IR investigation allowed the identification of the active sites and the adsorbed species and demonstrated that the conversion started from 350 degrees C with alkoxy group as the intermediate. The fixed-bed catalytic testing evidenced that in the range of 350-500 degrees C, 70-80% of chloromethane was transferred to ethylene, propylene and butenes. Increasing reaction temperature favors the conversion and enhances the yield of lighter olefins. A very important reversible phenomenon, the breaking of Al-O-P bonds upon adsorption of HCl, a main product of reaction to generate a large amount of P-OH groups and the recovery of Al-O-P upon removal of HCI was revealed. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maleic anhydride is an important chemical intermediate mainly produced by the selective oxidation of n-butane, an industrial process catalyzed by vanadyl pyrophosphate-based materials, (VO)2P2O7. The first topic was investigated in collaboration with a company specialized in the production of organic anhydrides (Polynt SpA), with the aim of improving the performance of the process for the selective oxidation of n-butane to maleic anhydride, comparing the behavior of an industrial vanadyl pyrophosphate catalysts when utilized either in the industrial plant or in lab-scale reactor. The study was focused on how the catalyst characteristics and reactivity are affected by the reaction conditions and how the addition of a dopant can enhance the catalytic performance. Moreover, the ageing of the catalyst was studied, in order to correlate the deactivation process with the modifications occurring in the catalyst. The second topic was produced within the Seventh Framework (FP7) European Project “EuroBioRef”. The study was focused on a new route for the synthesis of maleic anhydride starting from an alternative reactant produced by fermentation of biomass:“bio-1-butanol”. In this field, the different possible catalytic configurations were investigated: the process was divided into two main reactions, the dehydration of 1-butanol to butenes and the selective oxidation of butenes to maleic anhydride. The features needed to catalyze the two steps were analyzed and different materials were proposed as catalysts, namely Keggin-type polyoxometalates, VOPO4∙2H2O and (VO)2P2O7. The reactivity of 1-butanol was tested under different conditions, in order to optimize the performance and understand the nature of the interaction between the alcohol and the catalyst surface. Then, the key intermediates in the mechanism of 1-butanol oxidehydration to MA were studied, with the aim of understanding the possible reaction mechanism. Lastly, the reactivity of the chemically sourced 1-butanol was compared with that one of different types of bio-butanols produced by biomass fermentation.