10 resultados para BT4
Resumo:
To investigate the role of some adverse environmental conditions in chlamy-dospore formation by the mycelial form of P. brasiliensis, we cultured four P. brasiliensis isolates (18, Bt4, 1183, Pb9) at 25°C within solid agar medium either rich or poor in nutrients. Isolates 18 and 1183 were also cultured under anaerobiosis in a nitrogen atmosphere. Isolate 18 produced great number of terminal and intercalary chlamydospore after 7-10 days of culture in a medium poor in nutrients (2% agar with 0.1% dextrose and polypepton). The three other isolates also produced chlamydospores under the same conditions, but in lower numbers. Chlamydospore production by isolate 18 was abolished when the fungus was cultured in two agar media rich in nutrients (brain heart infusion and potato dextrose agar). Anaerobic incubation of isolate 18 under an atmosphere of N2 showed small mycelial outgrowth with numerous chlamydospores. At the electron microscopical level, the chlamydospores showed one or various nuclei and numerous mitochondria, indicating great potential for further development. Accordingly, chlamydospores produced multiple budding after only 24 h incubation at 35°C. The results demonstrate that under adverse environmental conditions P. brasiliensis mycelial form produces chlamydospores within a short period of time.
Resumo:
This Programme provides healthy nutritious food for residents and ex-residents of the East Belfast Missions homeless shelter. It also provides health and diet sessions and cookery demonstrations on how to plan and prepare healthy food on a low budget. Information and advice sessions will also be provided for local residents, senior citizens and users of their family and community programmes giving advice and support on how to prepare and cook healthy meals on a low income. They are also linked in with a Going Green local community gardening project. Funding: safefood, Contact: Joyce Mason Address: 240 Newtownards Road, Belfast BT4 1AF County: Antrim Phone number: +442890738304 Email: joyce.mason@ebm.org.uk Website: www.ebm.org.uk Partner organisation(s):
Resumo:
Carbon isotopic measurements on the benthic foraminiferal genus Cibicidoides document that mean deep ocean delta13C values were 0.46 per mil lower during the last glacial maximum than during the Late Holocene. The geographic distribution of delta13C was altered by changes in the production rate of nutrient-depleted deep water in the North Atlantic. During the Late Holocene, North Atlantic Deep Water, with high delta13C values and low nutrient values, can be found throughout the Atlantic Ocean, and its effects can be traced into the southern ocean where it mixes with recirculated Pacific deep water. During the glaciation, decreased production of North Atlantic Deep Water allowed southern ocean deep water to penetrate farther into the North Atlantic and across low-latitude fracture zones into the eastern Atlantic. Mean southern ocean delta13C values during the glaciation are lower than both North Atlantic and Pacific delta13C values, suggesting that production of nutrient-depleted water occurred in both oceans during the glaciation. Enriched 13C values in shallow cores within the Atlantic Ocean indicate the existence of a nutrient-depleted water mass above 2000 m in this ocean.
Resumo:
In this study we present a global distribution pattern and budget of the minimum flux of particulate organic carbon to the sea floor (J POC alpha). The estimations are based on regionally specific correlations between the diffusive oxygen flux across the sediment-water interface, the total organic carbon content in surface sediments, and the oxygen concentration in bottom waters. For this, we modified the principal equation of Cai and Reimers [1995] as a basic monod reaction rate, applied within 11 regions where in situ measurements of diffusive oxygen uptake exist. By application of the resulting transfer functions to other regions with similar sedimentary conditions and areal interpolation, we calculated a minimum global budget of particulate organic carbon that actually reaches the sea floor of ~0.5 GtC yr**-1 (>1000 m water depth (wd)), whereas approximately 0.002-0.12 GtC yr**-1 is buried in the sediments (0.01-0.4% of surface primary production). Despite the fact that our global budget is in good agreement with previous studies, we found conspicuous differences among the distribution patterns of primary production, calculations based on particle trap collections of the POC flux, and J POC alpha of this study. These deviations, especially located at the southeastern and southwestern Atlantic Ocean, the Greenland and Norwegian Sea and the entire equatorial Pacific Ocean, strongly indicate a considerable influence of lateral particle transport on the vertical link between surface waters and underlying sediments. This observation is supported by sediment trap data. Furthermore, local differences in the availability and quality of the organic matter as well as different transport mechanisms through the water column are discussed.
Resumo:
A compilation of 1118 surface sediment samples from the South Atlantic was used to map modern seafloor distribution of organic carbon content in this ocean basin. Using new data on Holocene sedimentation rates, we estimated the annual organic carbon accumulation in the pelagic realm (>3000 m water depth) to be approximately 1.8*10**12 g C/year. In the sediments underlying the divergence zone in the Eastern Equatorial Atlantic (EEA), only small amounts of organic carbon accumulate in spite of the high surface water productivity observed in that area. This implies that in the Eastern Equatorial Atlantic, organic carbon accumulation is strongly reduced by efficient degradation of organic matter prior to its burial. During the Last Glacial Maximum (LGM), accumulation of organic carbon was higher than during the mid-Holocene along the continental margins of Africa and South America (Brazil) as well as in the equatorial region. In the Eastern Equatorial Atlantic in particular, large relative differences between LGM and mid-Holocene accumulation rates are found. This is probably to a great extent due to better preservation of organic matter related to changes in bottom water circulation and not just a result of strongly enhanced export productivity during the glacial period. On average, a two- to three-fold increase in organic carbon accumulation during the LGM compared to mid-Holocene conditions can be deduced from our cores. However, for the deep-sea sediments this cannot be solely attributed to a glacial productivity increase, as changes in South Atlantic deep-water circulation seem to result in better organic carbon preservation during the LGM.