958 resultados para BROMINATED FLAME RETARDANTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brominated flame retardants, including hexabromocyclododecane (HBCD) and polybrominated diphenyl ethers (PBDEs) are used to reduce the flammability of a multitude of electrical and electronic products, textiles and foams. The use of selected PBDEs has ceased, however, use of decaBDE and HBCD continues. While elevated concentrations of PBDEs in humans have been observed in Australia, no data is available on other BFRs such as HBCD. This study aimed to provide background HBCD concentrations from a representative sample of the Australian population and to assess temporal trends of HBCD and compare with PBDE concentrations over a 16 year period. Samples of human milk collected in Australia from 1993 to 2009, primarily from primiparae mothers were combined into 12 pools from 1993 (2 pools); 2001; 2002/2003 (4 pools); 2003/2004; 2006; 2007/2008 (2 pools); and 2009. Concentrations of ∑HBCD ranged from not quantified (nq) to 19 ng g−1 lipid while α-HBCD and γ-HBCD ranged from nq to 10 ng g−1 lipid and nq to 9.2 ng g−1 lipid. β-HBCD was detected in only one sample at 3.6 ng g−1 lipid while ∑4PBDE ranged from 2.5 to 15.8 ng g−1 lipid. No temporal trend was apparent in HBCD concentrations in human milk collected in Australia from 1993 to 2009. In comparison, PBDE concentrations in human milk show a peak around 2002/03 (mean ∑4PBDEs = 9.6 ng g−1 lipid) and 2003/04 (12.4 ng g−1 lipid) followed by a decrease in 2007/08 (2.7 ng g−1 lipid) and 2009 (2.6 ng g−1 lipid). In human blood serum samples collected from the Australian population, PBDE concentrations did not vary greatly (p = 0.441) from 2002/03 to 2008/09. Continued monitoring including both human milk and serum for HBCD and PBDEs is required to observe trends in human body burden of HBCD and PBDEs body burden following changes to usage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human polybrominated diphenyl ether (PBDE) exposure occurs through a range of pathways including: ingestion of dust including hand-to-mouth contact; inhalation (air/particulate matter); and ingestion via food including the unique nutrition sources of human milk and placental transfer. While inhalation has been deemed a minor source of exposure, ingestion of food and dust make greater contributions to overall PBDE body burden with intake via dust reported to be much higher in infants than in adults. PBDEs have been detected in samples of human milk, blood serum, cord blood, and adipose tissue worldwide. Concentrations have been found to be highest in populations from North America, followed by Australia, Europe, and Asia. While factors such as gender and parity may not affect concentrations, occupational exposure and age (infants and children) are associated with higher PBDE concentrations. In contrast to “traditional” persistent organic pollutants, there is an inverse relationship between PBDE body burden and age. Predicted body burden calculated using available information on intake and elimination rates of BFRs appears to underestimate measured human body burden data obtained through analysis of BFRs in blood or human milk. This may be due to unknown exposure or inaccurate elimination data. Further exposure studies should focus on younger age groups and an investigation of human PBDE half-lives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Brominated flame retardants (BFRs), are chemicals widely used in consumer products including electronics, vehicles, plastics and textiles to reduce flammability. Experimental animal studies have confirmed that these compounds may interfere with thyroid hormone homeostasis and neurodevelopment but to date health effects in humans have not been systematically examined. Objectives To conduct a systematic review of studies on the health impacts of exposure to BFRs in humans, with a particular focus on children. Methods A systematic review was conducted using the Medline and EMBASE electronic databases up to 1 February 2012. Published cohort, cross-sectional, and case-control studies exploring the relationship between BFR exposure and various health outcomes were included. Results In total, 36 epidemiological studies meeting the pre-determined inclusion criteria were included. Plausible outcomes associated with BFR exposure include diabetes, neurobehavioral and developmental disorders, cancer, reproductive health effects and alteration in thyroid function. Evidence for a causal relationship between exposure to BFRs and health outcomes was evaluated within the Bradford Hill framework. Conclusion Although there is suggestive evidence that exposure to BFRs is harmful to health, further epidemiological investigations particularly among children, and long-term monitoring and surveillance of chemical impacts on humans are required to confirm these relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs) once extensively used in the plastics of a wide range of consumer products. The listing of certain congeners that are constituents of commercial PBDE mixtures (including c-octaBDE) in the Stockholm Convention and tightening regulation of many other BFRs in recent years have created the need for a rapid and effective method of identifying BFR-containing plastics. A three-tiered testing strategy comparing results from non-destructive testing (X-ray fluorescence (XRF)) (n = 1714), a surface wipe test (n = 137) and destructive chemical analysis (n = 48) was undertaken to systematically identify BFRs in a wide range of consumer products. XRF rapidly identified bromine in 92% of products later confirmed to contain BFRs. Surface wipes of products identified tetrabromobisphenol A (TBBPA), c-octaBDE congeners and BDE-209 with relatively high accuracy (> 75%) when confirmed by destructive chemical analysis. A relationship between the amounts of BFRs detected in surface wipes and subsequent destructive testing shows promise in predicting not only the types of BFRs present but also estimating the concentrations present. Information about the types of products that may contain persistent BFRs will assist regulators in implementing policies to further reduce the occurrence of these chemicals in consumer products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brominated flame retardants (BFRs) and brominated dioxins are emerging persistent organic pollutants that are ubiquitous in the environment and can be accumulated by wildlife and humans. These chemicals can disturb endocrine function. Recent studies have demonstrated that one of the mechanisms of endocrine disruption by chemicals is modulation of steroidogenic gene expression or enzyme activities. In this study, an in vitro assay based on the H295R human adrenocortical carcinoma cell line, which possesses most key genes or enzymes involved in steroidogenesis, was used to examine the effects of five bromophenols, two polybrominated biphenyls (PBBs 77 and 169), 2,3,7,8-tetrabromodibenzo-p-dioxin, and 2,3,7,8-tetrabromodibenzofuran on the expression of 10 key steroidogenic genes. The H295R cells were exposed to various BFR concentrations for 48 h, and the expression of specific genescytochrome P450 (CYP11A, CYP11B2, CYP17, CYP19, and CYP21), 3 beta-hydroxysteroid dehydrogenase (3PHSD2), 17 beta-hydroxysteroid dehydrogenase (17 beta HSD1 and 17 beta HSD4), steroidogenic acute regulatory protein (StAR), and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR)-was quantitatively measured using real-time polymerase chain reaction. Cell viability was not affected at the doses tested. Most of the genes were either up- or down-regulated, to some extent, by BFR exposure. Among the genes tested, 3PHSD2 was the most markedly up-regulated, with a range of magnitude from 1.6- to 20-fold. The results demonstrate that bromophenol, bromobiphenyls, and bromodibenzo-p-dioxin/furan are able to modulate steroidogenic gene expression, which may lead to endocrine disruption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vitro colon extended physiologically based extraction test (CEPBET) which incorporates human gastrointestinal tract (GIT) parameters (including pH and chemistry, solid-to-fluid ratio, mixing and emptying rates) was applied for the first time to study the bioaccessibility of brominated flame retardants (BFRs) from the 3 main GIT compartments (stomach, small intestine and colon) following ingestion of indoor dust. Results revealed the bioaccessibility of γ-HBCD (72%) was less than that for α- and β-isomers (92% and 80% respectively) which may be attributed to the lower aqueous solubility of the γ-isomer (2 μg L−1) compared to the α- and β-isomers (45 and 15 μg L−1 respectively). No significant change in the enantiomeric fractions of HBCDs was observed in any of the studied samples. However, this does not completely exclude the possibility of in vivo enantioselective absorption of HBCDs, as the GIT cell lining and bacterial flora – which may act enantioselectively – are not included in the current CE-PBET model. While TBBP-A was almost completely (94%) bioaccessible, BDE-209 was the least (14%) bioaccessible of the studied BFRs. Bioaccessibility of tri-hepta BDEs ranged from 32–58%. No decrease in the bioaccessibility with increasing level of bromination was observed in the studied PBDEs.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs) that have been heavily used in consumer products such as furniture foams, plastics, and textiles since the mid-1970’s. BFRs are added to products in order to meet state flammability standards intended to increase indoor safety in the event of a fire. The three commercial PBDE mixtures, Penta-, Octa-, and DecaBDE, have all been banned in the United States, however, limited use of DecaBDE is still permitted. PBDEs were phased out of production and added to the Stockholm Convention due to concerns over their environmental persistence and toxicity. Human exposure to PBDEs occurs primarily through the inadvertent ingestion of contaminated house dust, as well as though dietary sources. Despite the phase-out and discontinued use of PBDEs, human exposure to this class of chemicals is likely to continue for decades due to the continued use of treated products and existing environmental reservoirs of PBDEs. Extensive research over the years has shown that PBDEs disrupt thyroid hormone (TH) levels and neurodevelopmental endpoints in rodent and fish models. Additionally, there is growing epidemiological evidence linking PBDE exposure in humans to altered TH homeostasis and neurodevelopmental impairments in children. Due to the importance of THs throughout gestation, there is a great need to understand the effects of BFRs on the developing fetus. Specifically, the placenta plays a critical role in the transport, metabolism, and delivery of THs to the fetal compartment during pregnancy and is a likely target for BFR bioaccumulation and endocrine disruption. The central hypothesis of this dissertation research is that BFRs disrupt the activity of TH sulfotransferase (SULT) enzymes, thereby altering TH concentrations in the placenta.

In the first aim of this dissertation research, the concentrations of PBDEs and 2,4,6-TBP were measured in a cohort of 102 placenta tissue samples from an ongoing pregnancy cohort in Durham, NC. Methods were developed for the extraction and analysis of the BFR analytes. It was found that 2,4,6-TBP was significantly correlated with all PBDE analytes, indicating that 2,4,6-TBP may share common product applications with PBDEs or that 2,4,6-TBP is a metabolite of PBDE compounds. Additionally, this was the first study to measure 2,4,6-TBP in human placenta tissues.

In the second aim of this dissertation research, the placenta tissue concentrations of THs, as well as the endogenous activity of deiodinase (DI) and TH SULT enzymes were quantified using the same cohort of 102 placenta tissue samples. Enzyme activity was detected in all samples and this was the first study to measure TH DI and SULT activity in human placenta tissues. Enzyme activities and TH concentrations were compared with BFR concentrations measured in Aim 1. There were few statistically significant associations observed for the combined data, however, upon stratifying the data set based on infant sex, additional significant associations were observed. For example, among males, those with the highest concentrations of BDE-99 in placenta had T3 levels 0.80 times those with the lowest concentration of BDE-99 (95% confidence interval (CI): 0.59, 1.07). Whereas females with the highest concentrations of BDE-99 in placenta had T3 levels 1.50 times those with the lowest concentration of BDE-99 (95% CI: 1.10, 2.04). Additionally, all BFR analyte concentrations were higher in the placenta of males versus females and they were significantly higher for 2,4,6-TBP and BDE-209. 3,3’-T2 SULT activity was significantly higher in female placenta tissues, while type 3 DI activity was significantly higher in male placenta tissues. This research is the first to show sex-specific differences in the bioaccumulation of BFRs in human placenta tissue, as well as differences in TH concentrations and endogenous DI and SULT activity. The underlying mechanisms of these observed sex differences warrant further investigation.

In the third aim of this dissertation research, the effects of BFRs were examined in a human choriocarcinoma placenta cell line, BeWo. Michaelis-Menten parameters and inhibition curves were calculated for 2,4,6-TBP, 3-OH BDE-47, and 6-OH BDE-47. 2,4,6-TBP was shown to be the most potent inhibitor of 3,3’-T2 SULT activity with a calculated IC50 value of 11.6 nM. It was also shown that 2,4,6-TBP and 3-OH BDE-47 exhibit mixed inhibition of 3,3’-T2 sulfation in BeWo cell homogenates. Next, a series of cell culture exposure experiments were performed using 1, 6, 12, and 24 hour exposure durations. Once again, 2,4,6-TBP was shown to be the most potent inhibitor of basal 3,3’-T2 SULT activity by significantly decreasing activity at the high and medium dose (1 M and 0.5 M, respectively) at all measured time points. Interestingly, BDE-99 was also shown to inhibit basal 3,3’-T2 SULT activity in BeWo cells following the 24 hour exposure, despite exhibiting no inhibitory effects in the BeWo cell homogenate experiments. This indicates that BDE-99 must act through a pathway other than direct enzyme inhibition. Following exposures, the TH concentrations in the cell culture growth media and mRNA expression of TH-related genes were also examined. There was no observed effect of BFR treatment on these endpoints. Future work should focus on determining the downstream biological effects of TH SULT disruption in placental cells, as well as the underlying mechanisms of action responsible for reductions in basal TH SULT activity following BFR exposure.

This was one of the first studies to measure BFRs in a cohort of placenta tissue samples from the United States and the first study to measure THs, DI activity, and SULT activity in human placenta tissues. This research provides a novel contribution to our growing understanding of the effects of BFRs on TH homeostasis within the human placenta, and provides further evidence for sex-specific differences within this important organ. Future research should continue to investigate the effects of environmental contaminants on TH homeostasis within the placenta, as this represents the most critical and vulnerable stage of human development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Concentrations of brominated flame retardants (BFRs) are reported to increase in marine ecosystems. OBJECTIVES: Characterize exposure to BFRs in animals from different trophic levels in North-East Atlantic coastal marine ecosystems along a latitudinal gradient from southern Norway to Spitsbergen, Svalbard, in the Arctic. Calanoid species were collected from the Oslofjord (59°N), Froan (64°N), and Spitsbergen (> 78°N); Atlantic cod (Gadus morhua) from the Oslofjord and Froan; polar cod (Boreogadus saida) from Bear Island (74°N) and Spitsbergen; harbor seal (Phoca vitulina) from the Oslofjord, Froan, and Spitsbergen; and ringed seal (Phoca vitulina) from Spitsbergen. Eggs of common tern (Sterna hirundo) were collected from the Oslofjord, and eggs of arctic terns (Sterna paradisaea) from Froan and Spitsbergen. RESULTS: Levels of polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCD) generally decreased as a function of increasing latitude, reflecting distance from release sources. The clear latitudinal decrease in levels of BFRs was not pronounced in the two tern species, most likely because they are exposed during migration. The decabrominated compound BDE-209 was detected in animals from all three ecosystems, and the highest levels were found in arctic tern eggs from Spitsbergen. HBCD was found in animals from all trophic levels, except for in calanoids at Froan and Spitsbergen. CONCLUSIONS: Even though the levels of PBDEs and HBCD are generally low in North-East Atlantic coastal marine ecosystems, there are concerns about the relatively high presence of BDE-209 and HBCD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polybrominated diphenyl ethers (PBDEs), a common class of brominated flame retardants, are a ubiquitous part of our built environment, and for many years have contributed to improved public safety by reducing the flammability of everyday goods. Recently, PBDEs have come under increased international attention because of their potential to impact upon the environment and human health. Some PBDE compounds have been nominated for possible inclusion on the Stockholm Convention on Persistent Organic Pollutants, to which Australia is a Party. Work under the Stockholm Convention has demonstrated the capacity of some PBDEs to persist and accumulate in the environment and to be carried long distances. Much is unknown about the impact of PBDEs on living organisms, however recent studies show that some PBDEs can inhibit growth in colonies of plankton and algae and depress the reproduction of zooplankton. Laboratory mice and rats have also shown liver disturbances and damage to developing nervous systems as a result of exposure to PBDEs. In 2004, the Australian Government Department of the Environment and Water Resources began three studies to examine levels of PBDEs in aquatic sediments, indoor environments and human blood, as knowledge about PBDEs in Australia was very limited. The aim of these studies was to improve this knowledge base so that governments were in a better position to consider appropriate management actions. Due to the high costs for laboratory analysis of PBDEs, the number of samples collected for each study was limited and so caution is required when interpreting the findings. Nevertheless, these studies will provide governments with an indication of how prevalent PBDEs are in the Australian population and the environment and will also contribute to international knowledge about these chemicals. The Department of the Environment and Water Resources will be working closely with othergovernment agencies, industry and the community to investigate any further action that may be required to address PBDEs in Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of organophosphate esters (PFRs) as flame retardants and plasticizers has increased due to the ban of some brominated flame retardants. There is however some concern regarding the toxicity, particularly carcinogenicity and neurotoxicity, of some of the PFRs. In this study we applied wastewater analysis to assess use of PFRs by the Australian population. Influent samples were collected from eleven wastewater treatment plants (STPs) in Australia on Census day and analysed for PFRs using gas chromatography coupled with mass spectrometry (GC-MS). Per capita mass loads of PFRs were calculated using the accurate Census head counts. The results indicate that tris(2-butoxyethyl) phosphate (TBOEP) has the highest per capita input into wastewater followed by tris(2-chloroisopropyl) phosphate (TCIPP), tris(isobutyl) phosphate (TIBP), tris(2-chloroethyl) phosphate (TCEP) and tris(1,3-dichloroisopropyl) phosphate (TDCIPP). Similar PFR profiles were observed across the Australian STPs and a comparison with European and U.S. STPs indicated similar PFR concentrations. We estimate that approximately 2.1 mg person−1 day−1 of PFRs are input into Australian wastewater which equates to 16 tonnes per annum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brominated flame retardants (BFRs) have been found in Arctic wildlife, lake sediment, and air. To identify the atmospheric BFR deposition history on Svalbard, Norway, we analyzed 19 BFRs, including hexabromocyclododecane (HBCD), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), decabromodiphenyl ethane (DBDPE), pentabromoethylbenzene (PBEB),and 15 polybrominated diphenyl ether congeners (PBDE) in the upper 34 m of an ice core (representing 1953-2005) from Holtedahlfonna, the western-most ice sheet on Svalbard. All of the non-PBDE compounds were detected in nearly continuous profiles in the core. Seven PBDEs were not observed above background (28,47,66,100,99,154,153), while 4 were found in 1 or 2 of 6 segments (17,85,138,183). BDEs-49,71,190,209 had nearly continuous profiles but only BDE-209 in large amounts. The greatest inputs were HBCD and BDE-209, 910, and 320 pg/cm**2/yr from 1995-2005. DBDPE, BTBPE, and PBEB show nearly continuous input growth in recent core segments, but all were <6 pg/cm**2/yr. Long-range atmospheric processes may have moved these particle-bound BFRs to the site, probably during the Arctic haze season. Average air mass trajectories over 10 years show >75% of atmospheric flow to Holtedahlfonna coming from Eurasia during haze periods (March and April).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supported nickel catalyst (Ni-Cat) was used as a catalyst to improve the flame retarclancy of intumescent flame-retardants (IFR) systems based on ammonium polyphosphate and pentaerythritol (PETOL) in polypropylene (PP) matrix. Limited oxygen index (LOI), UL-94 rating, and thermogravimetric analysis were used to characterize the flame retardancy and thermal stability of the PP systems, and field emission scanning electron microscopy (FE-SEM) and Fourier transformed infrared spectroscopy (FTIR) were used to analyze the microstructure and composition of the chars formed during measuring LOI value and after combustion at 800 degrees C. The catalytic effect of NiCat was shown in an increase of LOI, a change in the char microstructure, and improvement of the thermal stability in the PP systems, which result from the synergistic effect of Ni-Cat and IFR. The results from FE-SEM and FTIR spectra of the char can explain how this synergistic effect happened.