128 resultados para BRANCHIOSTOMA-BELCHERI-TSINGTAUENSE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population structure of the lancelet Branchiostoma caribaeum Sandevall, 1853 was studied in four surveys, corresponding to austral seasons, in a tropical bay, southeast of Brazil. Abundance was higher in the spring and was positively correlated to coarse sediments, limiting its occurrence to some sectors of the sampling area. Body length and biomass differed seasonally but not between sexes. Sexually mature individuals occurred in all seasons, suggesting continuous breeding that is typical of tropical species. Variation in the frequency of small specimens indicates temporal differences in the intensity of breeding. The body length of recruits differed from other population of lancelets and the small length which B. caribaeum attained sexual maturity in Guanabara Bay may be related to local environmental stress or the great availability of food.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fox genes are united by encoding a fork head domain, a deoxyribonucleic acid (DNA)-binding domain of the winged-helix type that marks these genes as encoding transcription factors. Vertebrate Fox genes are classified into 23 subclasses named from FoxA to FoxS. We have surveyed the genome of the amphioxus Branchiostoma floridae, identifying 32 distinct Fox genes representing 21 of these 23 subclasses. The missing subclasses, FoxR and FoxS, are specific to vertebrates, and in addition, B. floridae has one further group, FoxAB, that is not found in vertebrates. Hence, we conclude B. floridae has maintained a high level of Fox gene diversity. Expressed sequence tag and complementary DNA sequence data support the expression of 23 genes. Several linkages between B. floridae Fox genes were noted, including some that have evolved relatively recently via tandem duplication in the amphioxus lineage and others that are more ancient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the sister group to vertebrates, amphioxus is consistently used as a model of genome evolution for understanding the invertebrate/vertebrate transition. The amphioxus genome has not undergone massive duplications like those in the vertebrates or disruptive rearrangements like in the genome of Ciona, a urochordate, making it an ideal evolutionary model. Transposable elements have been linked to many genomic evolutionary changes including increased genome size, modified gene expression, massive gene rearrangements, and possibly intron evolution. Despite their importance in genome evolution, few previous examples of transposable elements have been identified in amphioxus. We report five novel Miniature Inverted-repeat Transposable Elements (MITEs) identified by an analysis of amphioxus DNA sequence, which we have named LanceleTn-1, LanceleTn-2, LanceleTn-3a, LanceleTn-3b and LanceleTn-4. Several of the LanceleTn elements were identified in the amphioxus ParaHox cluster, and we suggest these have had important implications for the evolution of this highly conserved gene cluster. The estimated high copy numbers of these elements implies that MITEs are probably the most abundant type of mobile element in amphioxus, and are thus likely to have been of fundamental importance in shaping the evolution of the amphioxus genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Population structure of the lancelet Branchiostoma caribaeum Sandevall, 1853 was studied in four surveys, corresponding to austral seasons, in a tropical bay, southeast of Brazil. Abundance was higher in the spring and was positively correlated to coarse sediments, limiting its occurrence to some sectors of the sampling area. Body length and biomass differed seasonally but not between sexes. Sexually mature individuals occurred in all seasons, suggesting continuous breeding that is typical of tropical species. Variation in the frequency of small specimens indicates temporal differences in the intensity of breeding. The body length of recruits differed from other population of lancelets and the small length which B. caribaeum attained sexual maturity in Guanabara Bay may be related to local environmental stress or the great availability of food.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FGFRL1 is a novel member of the fibroblast growth factor receptor family that controls the formation of musculoskeletal tissues. Some vertebrates, including man, cow, dog, mouse, rat and chicken, possess a single copy the FGFRL1 gene. Teleostean fish have two copies, fgfrl1a and fgfrl1b, because they have undergone a whole genome duplication. Vertebrates belong to the chordates, a phylum that also includes the subphyla of the cephalochordates (e.g. Branchiostoma floridae) and urochordates (tunicates, e.g. Ciona intestinalis). We therefore investigated whether other chordates might also possess an FGFRL1 related gene. In fact, a homologous gene was found in B. floridae (amphioxus). The corresponding protein showed 60% sequence identity with the human protein and all sequence motifs identified in the vertebrate proteins were also conserved in amphioxus Fgfrl1. In contrast, the genome of the urochordate C. intestinalis and those from more distantly related invertebrates including the insect Drosophila melanogaster and the nematode Caenorhabditis elegans did not appear to contain any related sequences. Thus, the FGFRL1 gene might have evolved just before branching of the vertebrate lineage from the other chordates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three species of Trifoliovarium are described from marine fishes from Moreton Bay, Queensland: T. triacanthi (Parukhin, 1964) n. comb. (syns Hysterolecitha triacanthi Parukhin, 1964; T. triacanthi Bilqees, 1973; T. triacanthusi Gupta & Ahmad, 1976) from Tripodichthys angustifrons; T. ovarilobulus (Wang, 1989) n. comb. (syn. Hysterolecithia[sic]ovarilobulus) from Paramonacanthus japonicus and Pelates quadrilineatus; and T. draconis n. sp. from Callionymus sublaevis and C. belcheri. A list of the species of the subfamily Trifoliovariinae is given along with a key. A cladistic study of the subfamily based on 23 characters is presented, the results of which indicate the monophyly of the genus Assitrema and the paraphyly of Trifoliovarium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aldehyde dehydrogenases (ALDHs) catabolize toxic aldehydes and process the vitamin A-derived retinaldehyde into retinoic acid (RA), a small diffusible molecule and a pivotal chordate morphogen. In this study, we combine phylogenetic, structural, genomic, and developmental gene expression analyses to examine the evolutionary origins of ALDH substrate preference. Structural modeling reveals that processing of small aldehydes, such as acetaldehyde, by ALDH2, versus large aldehydes, including retinaldehyde, by ALDH1A is associated with small versus large substrate entry channels (SECs), respectively. Moreover, we show that metazoan ALDH1s and ALDH2s are members of a single ALDH1/2 clade and that during evolution, eukaryote ALDH1/2s often switched between large and small SECs after gene duplication, transforming constricted channels into wide opened ones and vice versa. Ancestral sequence reconstructions suggest that during the evolutionary emergence of RA signaling, the ancestral, narrow-channeled metazoan ALDH1/2 gave rise to large ALDH1 channels capable of accommodating bulky aldehydes, such as retinaldehyde, supporting the view that retinoid-dependent signaling arose from ancestral cellular detoxification mechanisms. Our analyses also indicate that, on a more restricted evolutionary scale, ALDH1 duplicates from invertebrate chordates (amphioxus and ascidian tunicates) underwent switches to smaller and narrower SECs. When combined with alterations in gene expression, these switches led to neofunctionalization from ALDH1-like roles in embryonic patterning to systemic, ALDH2-like roles, suggesting functional shifts from signaling to detoxification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estudamos a dieta dos juvenis de Trachinotus carolinus (Linnaeus, 1766) em praias da Baía de Sepetiba (Rio de Janeiro, Brasil) entre janeiro de 2000 e abril de 2001. Procuramos avaliar a plasticidade trófica de peixes desta espécie ao longo de um gradiente espacial com diferentes níveis de exposição às ondas, sazonalidade, além de avaliar mudanças ontogenéticas na dieta. Os itens alimentares foram analisados através do índice de importância relativa (IIR), determinado pelos valores das frequências de ocorrência, de número e de peso. Os itens de maior importância foram do subfilo Crustacea, ordens Mysidacea, e o representante da ordem Decapoda Emerita brasiliensis (Schmitt, 1935), além de Cefalochordata, representado por Branchiostoma platae (Fitzinger, 1862). Na zona de maior exposição às ondas (praia de Barra de Guaratiba) e com substrato predominantemente arenoso, a dieta foi constituída principalmente por Emerita brasiliensis e Cirripedia, este último presente nos costões rochosos que limitam a praia; na zona de exposição intermediária (praia de Muriqui), houve um predomínio de Mysidacea e Branchiostoma platae; na zona mais protegida (praia de Itacuruçá), os itens de maior abundância foram Polychaeta, Mysidacea e Branchiostoma platae. Sazonalmente não ocorreu variação no uso de Mysidacea, enquanto Branchiostoma platae foi mais consumido durante o inverno, Polychaeta na primavera e Cirripedia e Emerita brasiliensis, no verão. Mysidacea foi o alimento predominante em todas as classes de tamanho, enquanto Polychaeta foi utilizado predominantemente por peixes menores que 20 mm de comprimento padrão e Emerita brasiliensis e Cirripedia foram consumidos principalmente por indivíduos maiores que 40 mm, somente na praia de maior exposição. O sucesso no uso de praias desprotegidas e zonas de arrebentação por esta espécie de peixe pode ser em parte devido à estratégia trófica oportunista, que utiliza uma ampla variedade de recursos disponíveis no ambiente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approximately 520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se describe lugares de anidación de las especies residentes más comunes del litoral peruano. Se amplía el conocimiento del área de distribución para las siguientes especies: Sula nebouxii, Phalacrocorax gaimardi, Ereunetes mauri, Erolia minutilla y Larus belcheri. Se contribuye con una especie nueva para la costa peruana, con Heteroscelus incanum, de la familia Scolopacidae, que sólo era conocida hasta Ecuador, en el Perú, fue registrada y cazada en Punta Salinas (Cocoi), 11°13 'Lat.S. Se da el primer récord de reproducción de Charadrius wilsonia beldingi en la costa central del Perú.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates--a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background In most eumetazoans studied so far, Hox genes determine the identity of structures along the main body axis. They are usually linked in genomic clusters and, in the case of the vertebrate embryo, are expressed with spatial and temporal colinearity. Outside vertebrates, temporal colinearity has been reported in the cephalochordate amphioxus (the least derived living relative of the chordate ancestor) but only for anterior and central genes, namely Hox1 to Hox4 and Hox6. However, most of the Hox gene expression patterns in amphioxus have not been reported. To gain global insights into the evolution of Hox clusters in chordates, we investigated a more extended expression profile of amphioxus Hox genes. Results Here we report an extended expression profile of the European amphioxus Branchiostoma lanceolatum Hox genes and describe that all Hox genes, except Hox13, are expressed during development. Interestingly, we report the breaking of both spatial and temporal colinearity for at least Hox6 and Hox14, which thus have escaped from the classical Hox code concept. We show a previously unidentified Hox6 expression pattern and a faint expression for posterior Hox genes in structures such as the posterior mesoderm, notochord, and hindgut. Unexpectedly, we found that amphioxus Hox14 had the most divergent expression pattern. This gene is expressed in the anterior cerebral vesicle and pharyngeal endoderm. Amphioxus Hox14 expression represents the first report of Hox gene expression in the most anterior part of the central nervous system. Nevertheless, despite these divergent expression patterns, amphioxus Hox6 and Hox14 seem to be still regulated by retinoic acid. Conclusions Escape from colinearity by Hox genes is not unusual in either vertebrates or amphioxus and we suggest that those genes escaping from it are probably associated with the patterning of lineage-specific morphological traits, requiring the loss of those developmental constraints that kept them colinear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The FoxQ1 genes form a distinct group within the Fox (also known as forkhead) gene family. We have isolated a gene from the amphioxus Branchiostoma floridae that encodes a forkhead domain with high identity to FoxQ1 genes in other chordates. Molecular phylogenetic analysis places AmphiFoxQ1 in a robust grouping with vertebrate FoxQ1 genes and with Ciona intestinalis Ci-FoxQ1. This group is separate from that containing AmphiFoxQ2, which instead groups with other invertebrate Fox genes. The expression of AmphiFoxQ1 was analysed by whole mount in situ hybridisation. The results show that AmphiFoxQ1 expression is confined to the developing endoderm, and specifically marks the endostyle and associated peripharyngeal bands of amphioxus larvae. Ci-FoxQ1 is also expressed in the endostyle, highlighting this as a conserved site of FoxQ1 gene expression in basal chordates. (C) 2004 Elsevier B.V. All rights reserved.