836 resultados para BRANCHED POLYETHYLENES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of novel neutral nickel complexes 4a-e bearing modified beta-ketoiminato ligands [(2,6-(Pr2C6H3)-Pr-i)N=C(R-1)CHC(2 '-R2C6H4)O]Ni(Ph)(PPh3) (4a, R-1 R-2 = H; 4b, R-1 = H, R-2 = Ph; 4c, R-1 = H, R-2 = Naphth; 4d, R-1 = CH3, R-2 = Ph; 4e, R-1 = CF3, R-2 Ph) have been synthesized and characterized. Molecular structures of 4b and 4e were further confirmed by X-ray crystallographic analysis. Activated with B(C6F5)(3), all the complexes are active for the polymerization of ethylene to branched polyethylenes. Ligand structure, i.e., substituents R-1 and R-2, greatly influences not only catalytic activity but also the molecular weight and branch content of the polyethylene produced. The phenyl-substituted complex 4b exhibits the highest activity of lip to 145 kg PE/mol(Ni)center dot h center dot atm under optimized conditions, which is about 10 times more than unsubstituted complex 4a (14.0 kg PE/mol(Ni center dot)h center dot atm). Highly branched polyethylene with 103 branches per 1000 carbon atoms has been prepared using catalyst 4e.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two novel salicylaldimine-based neutral nickel(II) complexes, [(2,6-iPr(2)C(6)H(3))NCH(2-ArC6H3O)]Ni(PPh3)Ph (6, Ar = 2-(OH)C6H4; 8, Ar = 2-OH-3-(2,6-iPr(2)C(6)H(3)NCH)C6H3), have been synthesized, and their structures have also been confirmed by X-ray crystallography, elemental analysis, and H-1 and C-13 NMR spectra. An important structural feature of the two complexes is the free hydroxyl group, which allows them to react with silica pretreated with trimethylaluminum under immobilization by the formation of a covalent bond between the neutral nickel(II) complex and the pretreated silica. As active single-component catalysts, the two complexes exhibited high catalytic activities up to 1.14 and 1.47 x 10(6) g PE/mol(Ni)center dot h for ethylene polymerization, respectively, and yielded branched polymers. Requiring no cocatalyst, the two supported catalysts also showed relatively high activities up to 4.0 x 10(5) g PE/mol(Ni)center dot h and produced polyethylenes with high weight-average molecular weights of up to 120 kg/mol and a moderate degree of branching (ca. 13-26 branches per 1000 carbon atoms).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of reactor blends of linear and branched polyethylenes have been prepared, in the presence of modified methylaluminoxane, using a combination of 2,6-bis[1(2,6-dimethyphenylimino) pyridyl]-cobalt(II) dichloride (1), known as an active catalyst for producing linear polyethylene, and [1,4-bis(2,6-diidopropylphenyl)] acenaphthene diimine nickel(II) dibromide (2), which is active for the production of branched polyethylene. The polymerizations were performed at various levels of catalyst feed ratio at 10 bar. The linear correlation between catalyst activity and concentration of catalyst 2 suggested that the catalysts performed independently from each other. The weight-average molecular weights ((M) over bar (w)), crystalline structures, and phase structures of the blends were investigated, using a combination of gel permeation chromatography, differential scanning calorimetry, wide-angle X-ray diffraction, and small angle X-ray scattering techniques. It was found that the polymerization activities and MWs and crystallization rate of the polymers took decreasing tendency with the increase of the catalyst 2 ratios, while melting temperatures (T-m), crystalline temperatures (T,), and crystalline degrees took decreasing tendency. Long period was distinctly influenced by the amorphous component concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of alpha-diimine nickel(II) complexes containing chloro-substituted ligands, [(Ar)N=C(C10H6)C=N(Ar)]NiBr2 (4a, Ar = 2,3-C6H3Cl2; 4b, Ar = 2,4-C6H3Cl2; 4c, Ar = 2,5-C6H3Cl2; 4d, Ar = 2,6-C6H3Cl2; 4e, Ar = 2,4,6-C6H2Cl3) and [(Ar)N=C(C10H6)C=N(Ar)](2)NiBr2 (5a, Ar = 2,3-C6H3Cl2; 5b, Ar = 2,4-C6H3Cl2; 5c, Ar = 2,5-C6H3Cl2), have been synthesized and investigated as precatalysts for ethylene polymerization. In the presence of modified methylaluminoxane (MMAO) as a cocatalyst, these complexes are highly effective catalysts for the oligomerization or polymerization of ethylene under mild conditions. The catalyst activity and the properties of the products were strongly affected by the aryl-substituents of the ligands used. Depending on the catalyst structure, it is possible to obtain the products ranging from linear alpha-olefins to high-molecular weight polyethylenes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystallization and melting behavior of mellocene-catalized branched and linear polyethylenes of low molecular weight was studied. It was found that the crystalline lattice of branched polyethylene is larger than that of linear polyethylene because of the existence of branched chains. The melting behavior of branched polyethylene is similar to that of linear polyethylene since the branched chains can not enter the lattice. However, the crystalline behavior of low molecular weight branched polyethylene is the same as that of high molecular weight linear polyethylene, but different with that of low molecular weigh linear polyethylene. Kinetics theory analysis evidenced that the transition temperature of growth regime of the branched polyethylene is about 20 degreesC lower than that of linear polyethylene with the same molecular weight. It may be attributed to the existence of short branched chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on the lowerature inductively coupled plasma-enabled synthesis of ultralong (up to several millimeters in length) SiO2 nanowires, which were otherwise impossible to synthesize without the presence of a plasma. Depending on the process conditions, the nanowires feature straight, helical, or branched morphologies. The nanowires are amorphous, with a near-stoichiometric elemental composition ([O] / [Si] =2.09) and are very uniform throughout their length. The role of the ionized gas environment is discussed and the growth mechanism is proposed. These nanowires are particularly promising for nanophotonic applications where long-distance and channelled light transmission and polarization control are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Malnutrition is common in children with end-stage liver disease (ESLD) awaiting orthotopic liver transplantation (OLT), and nutritional support is assuming an important role in preoperative management. To evaluate preoperative nutritional therapy, 19 children (median age 1.25 y) with ESLD awaiting OLT were prospectively studied. Two high-energy, isoenergetic and isonitrogenous nutritional formulations delivered nasogastrically were compared: a branched-chain amino acid (BCAA)-enriched semielemental formulation and a matched standard semielemental formulation. Twelve of 19 patients completed a randomized controlled study before OLT and 10 of 19 completed a full crossover study. Improvements in weight and height occurred during the BCAA supplements, with no statistical change on the standard formulation. Significant increases in total body potassium, midupper arm circumference, and subscapular skinfold thickness occurred during the BCAA supplements, whereas no significant changes occurred during the standard formulation period. Significantly fewer albumin infusions were required during the BCAA supplement. These findings suggest that BCAA-enriched formulas have advantages over standard semielemental formulas in improving nutritional status in children with ESLD. and are deserving of wider application and study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because weed eradication programs commonly take 10 or more years to complete, there is a need to evaluate progress toward the eradication objective. We present a simple model, based on information that is readily obtainable, that assesses conformity to the delimitation and extirpation criteria for eradication. It is applied to the program currently targeting the annual parasitic weed, branched broomrape, in South Australia. The model consists of delimitation and extirpation (E) measures plotted against each other to form an 'eradograph.' Deviations from the 'ideal' eradograph plot can inform tactical responses, e.g., increases in survey and/or control effort. Infestations progress from the active phase to the monitoring phase when no plants have been detected for at least 12 mo. They revert to the active phase upon further detection of plants. We summarize this process for the invasion as a whole in a state-and-transition model. Using this model we demonstrate that the invasion is unlikely to be delimited unless the amount of newly detected infested area decreases, on average, by at least 50% per annum. As a result of control activities implemented, on average approximately 70% (range, 44 to 86%) of active infestations progressed to the monitoring phase in the year following their detection. Simulations suggest that increasing this rate of transition will not increase E to a significant extent. The rate of reversion of infestations from the monitoring phase to the active phase decreased logarithmically with time since last detection, but it is likely that lower rates of reversion would accelerate the trend toward extirpation. Program performance with respect to the delimitation criterion has been variable; performance with respect to the extirpation criterion would be improved considerably by the development and application of cost-effective methods for eliminating branched broomrape soil seed populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commodity plastics that are used in our everyday lives are based on polyolefin resins and they find wide variety of applications in several areas. Most of the production is carried out in catalyzed low pressure processes. As a consequence polymerization of ethene and α-olefins has been one of the focus areas for catalyst research both in industry and academia. Enormous amount of effort have been dedicated to fine tune the processes and to obtain better control of the polymerization and to produce tailored polymer structures The literature review of the thesis concentrates on the use of Group IV metal complexes as catalysts for polymerization of ethene and branched α-olefins. More precisely the review is focused on the use of complexes bearing [O,O] and [O,N] type ligands which have gained considerable interest. Effects of the ligand framework as well as mechanical and fluxional behaviour of the complexes are discussed. The experimental part consists mainly of development of new Group IV metal complexes bearing [O,O] and [O,N] ligands and their use as catalysts precursors in ethene polymerization. Part of the experimental work deals with usage of high-throughput techniques in tailoring properties of new polymer materials which are synthesized using Group IV complexes as catalysts. It is known that the by changing the steric and electronic properties of the ligand framework it is possible to fine tune the catalyst and to gain control over the polymerization reaction. This is why in this thesis the complex structures were designed so that the ligand frameworks could be fairly easily modified. All together 14 complexes were synthesised and used as catalysts in ethene polymerizations. It was found that the ligand framework did have an impact within the studied catalyst families. The activities of the catalysts were affected by the changes in complex structure and also effects on the produced polymers were observed: molecular weights and molecular weight distributions were depended on the used catalyst structure. Some catalysts also produced bi- or multi-modal polymers. During last decade high-throughput techniques developed in pharmaceutical industries have been adopted into polyolefin research in order to speed-up and optimize the catalyst candidates. These methods can now be regarded as established method suitable for both academia and industry alike. These high-throughput techniques were used in tailoring poly(4-methyl-1-pentene) polymers which were synthesized using Group IV metal complexes as catalysts. This work done in this thesis represents the first successful example where the high-throughput synthesis techniques are combined with high-throughput mechanical testing techniques to speed-up the discovery process for new polymer materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper deals with the classical problem of axi-symmetric transmission of low amplitude waves through a circular pipe containing a viscous liquid. Exact governing equations are identified and solved, the radial as well as the axial component of the velocity being considered. Attention is drawn to certain fallacies underlying the conventional approach. The parameters required in the formulation of the transfer matrix for a pipe have been evaluated. In order to evaluate the response at the terminal point of a branched system for a sinusoidal input at one of the ends, a general algorithm has been developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lipid A and lipopolysaccharide (LPS) binding and neutralizing activities of a synthetic, polycationic, amphiphilic peptide were studied. The branched peptide, designed as a functional analog of polymyxin B, has a six residue hydrophobic sequence, bearing at its N-terminus a penultimate lysine residue whose alpha- and epsilon-amino groups are coupled to two terminal lysine residues. In fluorescence spectroscopic studies designed to examine relative affinities of binding to the toxin, neutralization of surface charge and fluidization of the acyl domains, the peptide was active, closely resembling the effects of polymyxin B and its nonapeptide derivative; however, the synthetic peptide does not induce phase transitions in LPS aggregates as do polymyxin B and polymyxin B nonapeptide. The peptide was also comparable with polymyxin B in its ability to inhibit LPS-mediated IL-l and IL-6 release from human peripheral blood mononuclear cells. The synthetic compound is devoid of antibacterial activities and did not induce conductance fluxes in LPS-containing asymmetric planar membranes. These results strengthen the premise that basicity and amphiphilicity are necessary and sufficient physical properties that ascribe endotoxin binding and neutralizing activities, and further suggest that antibacterial/membrane perturbant and LPS neutralizing activities are dissociable, which may be of value in designing LPS-sequestering agents of low toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cereal arabinoxylans, guar galactomannans, and dextrans produced by lactic acid bacteria(LAB) are a structurally diverse group of branched polysaccharides with nutritional and industrial functions. In this thesis, the effect of the chemical structure on the dilute solution properties of these polysaccharides was investigated using size-exclusion chromatography(SEC) and asymmetric flow field-flow fractionation (AsFlFFF) with multiple-detection. The chemical structures of arabinoxylans were determined, whereas galactomannan and dextran structures were studied in previous investigations. Characterization of arabinoxylans revealed differences in the chemical structures of cereal arabinoxylans. Although arabinoxylans from wheat, rye, and barley fiber contained similar amounts of arabinose side units, the substitution pattern of arabinoxylans from different cereals varied. Arabinoxylans from barley husks and commercial low-viscosity wheat arabinoxylan contained a lower number of arabinose side units. Structurally different dextrans were obtained from different LAB. The structural effects on the solution properties could be studied in detail by modifying pure wheat and rye arabinoxylans and guar galactomannan with specific enzymes. The solution characterization of arabinoxylans, enzymatically modified galactomannans, and dextrans revealed the presence of aggregates in aqueous polysaccharide solutions. In the case of arabinoxylans and dextrans, the comparison of molar mass data from aqueous and organic SEC analyses was essential in confirming aggregation, which could not be observed only from the peak or molar mass distribution shapes obtained with aqueous SEC. The AsFlFFF analyses gave further evidence of aggregation. Comparison of molar mass and intrinsic viscosity data of unmodified and partially debranched guar galactomannan, on the other hand, revealed the aggregation of native galactomannan. The arabinoxylan and galactomannan samples with low or enzymatically extensively decreased side unit content behaved similarly in aqueous solution: lower molar mass samples stayed in solution but formed large aggregates, whereas the water solubility of the higher-molar-mass samples decreased significantly. Due to the restricted solubility of galactomannans in organic solvents, only aqueous galactomannan solutions were studied. The SEC and AsFlFFF results differed for the wheat arabinoxylan and dextran samples. Column matrix effects and possible differences in the separation parameters are discussed, and a problem related to the non-established relationship between the separation parameters of the two separation techniques is highlighted. This thesis shows that complementary approaches in the solution characterization of chemically heterogeneous polysaccharides are needed to comprehensively investigate macromolecular behavior in solution. These results may also be valuable when characterizing other branched polysaccharides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oligoarabinofuranoside-containing glycolipids relevant to mycobacterial cell wall components were synthesized in order to understand the functional roles of such glycolipids. A series of linear tetra-, hexa-, octa-and a branched heptasaccharide oligoarabinofuranosides, with 1 -> 2 and 1 -> 5 a-linkages between the furanoside residues, were synthesized by chemical methods from readily available monomer building blocks. Upon the synthesis of glycolipids, constituted with a double alkyl chain-substituted sn-glycerol core and oligosaccharide fragments, biological studies were performed to identify the effect of synthetic glycolipids on the biofilm formation and sliding motilities of Mycobacterium smegmatis. Synthetic glycolipids and arabinofuranosides displayed an inhibitory effect on the growth profile, but mostly on the biofilm formation and maturation. Similarly, synthetic compounds also influenced the sliding motility of the bacteria. Further, biophysical studies were undertaken, so as to identify the interactions of the glycolipids with a pulmonary surfactant protein, namely surfactant protein A (SP-A), with the aid of the surface plasmon resonance technique. Specificities of each glycolipid interacting with SP-A were thus evaluated. From this study, glycolipids were found to exhibit higher apparent association constants than the corresponding oligosaccharide portion alone, without the double alkyl group-substituted glycerol core.