23 resultados para BOSONIZATION
Resumo:
We study the level-one irreducible highest weight representations of the quantum affine superalgebra U-q[sl((N) over cap\1)], and calculate their characters and supercharacters. We obtain bosonized q-vertex operators acting on the irreducible U-q[sl((N) over cap\1)] modules and derive the exchange relations satisfied by the vertex operators. We give the bosonization of the multicomponent super t-J model by using the bosonized vertex operators. (C) 2000 American Institute of Physics. [S0022- 2488(00)00508-9].
Resumo:
Here we address the problem of bosonizing massive fermions without making expansions in the fermion masses in both massive QED(2) and QED(3) with N fermion flavors including also a Thirring coupling. We start from two-point correlators involving the U(1) fermionic current and the gauge field. From the tensor structure of those correlators we prove that the U(1) current must be identically conserved (topological) in the corresponding bosonized theory in both D=2 and D=3 dimensions. We find an effective generating functional in terms of bosonic fields which reproduces these two-point correlators and from that we obtain a map of the Lagrangian density (ψ) over bar (r)(ipartial derivative-m)psi(r) into a bosonic one in both dimensions. This map is nonlocal but it is independent of the electromagnetic and Thirring couplings, at least in the quadratic approximation for the fermionic determinant.
Resumo:
We use a functional integral formalism developed earlier for the pure Luttinger liquid (LL) to find an exact representation for the electron Green function of the LL in the presence of a single backscattering impurity in the low-temperature limit. This allows us to reproduce results (well known from the bosonization techniques) for the suppression of the electron local density of states (LDOS) at the position of the impurity and for the Friedel oscillations at finite temperature. In addition, we have extracted from the exact representation an analytic dependence of LDOS on the distance from the impurity and shown how it crosses over to that for the pure LL.
Resumo:
Ultra cold polar bosons in a disordered lattice potential, described by the extended Bose-Hubbard model, display a rich phase diagram. In the case of uniform random disorder one finds two insulating quantum phases-the Mott-insulator and the Haldane insulator-in addition to a superfluid and a Bose glass phase. In the case of a quasiperiodic potential, further phases are found, e.g. the incommensurate density wave, adiabatically connected to the Haldane insulator. For the case of weak random disorder we determine the phase boundaries using a perturbative bosonization approach. We then calculate the entanglement spectrum for both types of disorder, showing that it provides a good indication of the various phases.
Resumo:
The q-deformed supersymmetric t-J model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the quantum affine superalgebra U-q[sl(2\1)]. We. give the bosonization of the boundary states. We give an integral expression for the correlation functions of the boundary model, and derive the difference equations which they satisfy.
Resumo:
The Izergin-Korepin model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the twisted quantum affine algebra U-q[((2))(2)]. We give the bosonization of the vacuum state with zero particle content. Excitation states are given by the action of the vertex operators on the vacuum state. We derive the boundary S-matrix. We give an integral expression of the correlation functions of the boundary model, and derive the difference equations which they satisfy. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The string model with N=2 world-sheet supersymmetry is approached via ghosts, Becchi-Rouet-Stora-Tyutin cohomology, and bosonization. Some amplitudes involving massless scalars and vectors are computed at the tree level. The constraints of locality on the spectrum are analyzed. An attempt is made to "decompactify" the model into a four-dimensional theory.
Resumo:
We study the duality of the supersymmetric self-dual and Maxwell-Chern-Simons theories coupled to a fermionic matter superfield, using a master action. This approach evades the difficulties inherent to the quartic couplings that appear when matter is represented by a scalar superfield. The price is that the spinorial matter superfield represents a unusual supersymmetric multiplet, whose main physical properties we also discuss. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study the possibility of establishing the dual equivalence between the noncommutative supersymmetric Maxwell-Chern-Simons theory and the noncommutative supersymmetric self-dual theory. It turns to be that whereas in the commutative case the Maxwell-Chern-Simons theory can be mapped into the sum of the self-dual theory and the Chern-Simons theory, in the noncommutative case such a mapping is possible only for the theory with modified Maxwell term. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work we investigate the effect of a BCS-type pairing term for free spinless fermions, with a propensity to form a condensate of pairs in a 1+1 dimension. Using the of bosonization technique we explore the possible condition of existence of quasiparticles in a superconducting state. Although there is no spontaneous breaking of chiral symmetry the propagator of one-particle fermion is massive and, in fact, resembles the one-particle Green s function of conventional quasiparticles
Resumo:
In two dimensions the simple addition of two chiral bosons of opposite chiralities does not lead to a full massless scalar field. Similarly, in three dimensions the addition of two Maxwell-Chern-Simons fields of opposite helicities +/- 1 will not produce a parity invariant Maxwell-Proca theory. An interference term between the opposite chiralities (helicities) states is required in order to obtain the expected result. The so-called soldering procedure provides the missing interference Lagrangian in both 2D and 3D cases. In two dimensions such interference term allows to fuse two chiral fermionic determinants into, a non-chiral one. In a recent work we have generalized this procedure by allowing the appearance of an extra parameter which takes two possible values and leads to two different soldered Lagrangians. Here we apply this generalized soldering in a bosonic theory which has appeared in a partial bosonization of the 3D gauged Thirring model with N flavors. The multiplicity of flavors allow new types of solderings and help us to understand the connection between different perturbative approaches to bosonization in 3D. In particular, we obtain an interference term which takes us from a multiflavor Niaxwell-Chern-Simons theory to a pair of self-dual and anti-self-dual theories when we combine together both fermionic determinants of +1/2 and -1/2 helicity fermions. An important role is played by a set of pure non-interacting Chern-Simons fields which amount to a normalization factor in the fermionic determinants and act like spectators in the original theory but play an active role in the soldering procedure. Our results suggest that the generalized soldering could be used to provide dual theories in both 2D and 3D cases. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The so-called conformal affine Toda theory coupled to the matter fields (CATM), associated to the (s) over capl(2) affine Lie algebra, is studied. The conformal symmetry is fixed by setting a connection to zero, then one defines an off-critical model, the affine Toda model coupled to the matter (ATM). Using the dressing transformation method we construct the explicit forms of the two-soliton classical solutions, and show that a physical bound soliton-antisoliton pair (breather) does not exist. Moreover, we verify that these solutions share some features of the sine-Gordon (massive Thirring) solitons, and satisfy the classical equivalence of topological and Noether currents in the ATM model. We show, using bosonization techniques that the ATM theory decouples into a sine-Gordon model and a free scalar. Imposing the Noether and topological currents equivalence as a constraint, one can show that the ATM model leads to a bag model like mechanism for the confinement of the color charge inside the sine-Gordon solitons (baryons).
Resumo:
We introduce a master action in non-commutative space, out of which we obtain the action of the non-commutative Maxwell-Chern-Simons theory. Then, we look for the corresponding dual theory at both first and second order in the non-commutative parameter. At the first order, the dual theory happens to be, precisely, the action obtained from the usual commutative self-dual model by generalizing the Chern-Simons term to its non-commutative version, including a cubic term. Since this resulting theory is also equivalent to the non-commutative massive Thirring model in the large fermion mass limit, we remove, as a byproduct, the obstacles arising in the generalization to non-commutative space, and to the first non-trivial order in the non-commutative parameter, of the bosonization in three dimensions. Then, performing calculations at the second order in the non-commutative parameter, we explicitly compute a new dual theory which differs from the non-commutative self-dual model and, further, differs also from other previous results and involves a very simple expression in terms of ordinary fields. In addition, a remarkable feature of our results is that the dual theory is local, unlike what happens in the non-Abelian, but commutative case. We also conclude that the generalization to non-commutative space of bosonization in three dimensions is possible only when considering the first non-trivial corrections over ordinary space.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We review two-dimensional QCD. We start with the field theory aspects since 't Hooft's 1/N expansion, arriving at the non-Abelian bosonization formula, coset construction and gauge-fixing procedure. Then we consider the string interpretation, phase structure and the collective coordinate approach. Adjoint matter is coupled to the theory, and the Landau-Ginzburg generalization is analysed. We end with considerations concerning higher algebras, integrability, constraint structure, and the relation of high-energy scattering of hadrons with two-dimensional (integrable) field theories.