991 resultados para BOSE CONDENSATE
Resumo:
In this paper, we present a theoretical study of a Bose-Einstein condensate of interacting bosons in a quartic trap in one, two, and three dimensions. Using Thomas-Fermi approximation, suitably complemented by numerical solutions of the Gross-Pitaevskii equation, we study the ground sate condensate density profiles, the chemical potential, the effects of cross-terms in the quartic potential, temporal evolution of various energy components of the condensate, and width oscillations of the condensate. Results obtained are compared with corresponding results for a bose condensate in a harmonic confinement.
Resumo:
We study a confined mixture of bosons and fermions in the quantal degeneracy regime with attractive boson-fermion interaction. We discuss the effect that the presence of vortical states and the displacement of the trapping potentials may have on mixtures near collapse, and investigate the phase stability diagram of the K-Rb mixture in the mean-field approximation supposing in one case that the trapping potentials felt by bosons and fermions are shifted from each other, as it happens in the presence of a gravitational sag, and in another case, assuming that the Bose condensate sustains a vortex state. In both cases, we have obtained an analytical expression for the fermion effective potential when the Bose condensate is in the Thomas-Fermi regime, that can be used to determine the maxima of the Fermionic density. We have numerically checked that the values one obtains for the location of these maxima using the analytical formulas remain valid up to the critical boson and fermion numbers, above which the mixture collapses.
Resumo:
In a previous work El et al. (2006) [1] exact stable oblique soliton solutions were revealed in two-dimensional nonlinear Schrodinger flow. In this work we show that single soliton solution can be expressed within the Hirota bilinear formalism. An attempt to build two-soliton solutions shows that the system is "close" to integrability provided that the angle between the solitons is small and/or we are in the hypersonic limit. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A relaxation method is employed to study a rotating dense Bose-Einstein condensate beyond the Thomas-Fermi approximation. We use a slave-boson model to describe the strongly interacting condensate and derive a generalized nonlinear Schrodinger equation with a kinetic term for the rotating condensate. In comparison with previous calculations, based on the Thomas-Fermi approximation, significant improvements are found in regions where the condensate in a trap potential is not smooth. The critical angular velocity of the vortex formation is higher than in the Thomas-Fermi prediction.
Resumo:
We report on the experimental observation of vortex tangles in an atomic Bose-Einstein condensate (BEC) of (87)Rb atoms when an external oscillatory perturbation is introduced in the trap. The vortex tangle configuration is a signature of the presence of a turbulent regime in the cloud. We also show that this turbulent cloud suppresses the aspect ratio inversion typically observed in quantum degenerate bosonic gases during free expansion. Instead, the cloud expands keeping the ratio between their axis constant. Turbulence in atomic superfluids may constitute an alternative system to investigate decay mechanisms as well as to test fundamental theoretical aspects in this field.
Resumo:
This paper presents a description of nuclear magnetic resonance (NMR) of quadrupolar systems using the Holstein-Primakoff (HP) formalism and its analogy with a Bose-Einstein condensate (BEC) system. Two nuclear spin systems constituted of quadrupolar nuclei I=3/2 ((23)Na) and I=7/2 ((133)Cs) in lyotropic liquid crystals were used for experimental demonstrations. Specifically, we derived the conditions necessary for accomplishing the analogy, executed the proper experiments, and compared with quantum mechanical prediction for a Bose system. The NMR description in the HP representation could be applied in the future as a workbench for BEC-like systems, where the statistical properties may be obtained using the intermediate statistic, first established by Gentile. The description can be applied for any quadrupolar systems, including new developed solid-state NMR GaAS nanodevices.
Resumo:
The process of stimulated Raman adiabatic passage (STIRAP) provides a possible route for the generation of a coherent molecular Bose-Einstein condensate (BEC) from an atomic BEC. We analyze this process in a three-dimensional mean-field theory, including atom-atom interactions and nonresonant intermediate levels. We find that the process is feasible, but at larger Rabi frequencies than anticipated from a crude single-mode lossless analysis, due to two-photon dephasing caused by the atomic interactions. We then identify optimal strategies in STIRAP allowing one to maintain high conversion efficiencies with smaller Rabi frequencies and under experimentally less demanding conditions.
Resumo:
We investigate a nondestructive measurement technique to monitor Josephson-like oscillations between two spatially separated neutral atom Bose-Einstein condensates. One condensate is placed in an optical cavity, which is strongly driven by a coherent optical field. The cavity output field is monitored using a homodyne detection scheme. The cavity field is well detuned from an atomic resonance, and experiences a dispersive phase shift proportional to the number of atoms in the cavity. The detected current is modulated by the coherent tunneling oscillations of the condensate. Even when there is an equal number of atoms in each well initially, a phase is established by the measurement process and Josephson-like oscillations develop due to measurement backaction noise alone.
Resumo:
We consider the quantum theory of three fields interacting via parametric and repulsive quartic couplings. This can be applied to treat photonic chi((2)) and chi((3)) interactions, and interactions in atomic Bose-Einstein condensates or quantum Fermi gases, describing coherent molecule formation together with a-wave scattering. The simplest two-particle quantum solitons or bound-state solutions of the idealized Hamiltonian, without a momentum cutoff, are obtained exactly. They have a pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. We show that the solutions can be regularized with a momentum cutoff. The parametric quantum solitons have much more realistic length scales and binding energies than chi((3)) quantum solitons, and the resulting effects could potentially be experimentally tested in highly nonlinear optical parametric media or interacting matter-wave systems. N-particle quantum solitons and the ground state energy are analyzed using a variational approach. Applications to atomic/molecular Bose-Einstein condensates (BEC's) are given, where we predict the possibility of forming coupled BEC solitons in three space dimensions, and analyze superchemistry dynamics.
Resumo:
We give an asymptotic analytic solution for the generic atom-laser system with gain in a D-dimensional trap, and show that this has a non-Thomas-Fermi behavior. The effect is due to Bose-enhanced condensate growth, which creates a local-density maximum and a corresponding outward momentum component. In addition, the solution predicts amplified center-of-mass oscillations, leading to enhanced center-of-mass temperature.
Resumo:
We consider the quantum dynamics of a neutral atom Bose-Einstein condensate in a double-well potential, including many-body hard-sphere interactions. Using a mean-field factorization we show that the coherent oscillations due to tunneling are suppressed when the number of atoms exceeds a critical value. An exact quantum solution, in a two-mode approximation, shows that the mean-field solution is modulated by a quantum collapse and revival sequence.
Resumo:
We extend the earlier model of condensate growth of Davis et at (Davis M J, Gardiner C W and Ballagh R J 2000 Phys. Rev. A 62 063608) to include the effect of gravity in a magnetic trap. We carry out calculations to model the experiment reported by Kohl et al (Kohl M, Davis M J, Gardiner C W, Hansch T and Esslinger T 2001 Preprint cond-mat/0106642) who study the formation of a rubidium Bose-Einstein condensate for a range of evaporative cooling parameters. We find that, in the regime where our model is valid, the theoretical curves agree with all the experimental data with no fitting parameters. However, for the slowest cooling of the gas the theoretical curve deviates significantly from the experimental curves. It is possible that this discrepancy may be related to the formation of a quasicondensate.
Resumo:
We consider a two-component Bose-Einstein condensate in two spatially localized modes of a double-well potential, with periodic modulation of the tunnel coupling between the two modes. We treat the driven quantum field using a two-mode expansion and define the quantum dynamics in terms of the Floquet Operator for the time periodic Hamiltonian of the system. It has been shown that the corresponding semiclassical mean-field dynamics can exhibit regions of regular and chaotic motion. We show here that the quantum dynamics can exhibit dynamical tunneling between regions of regular motion, centered on fixed points (resonances) of the semiclassical dynamics.
Resumo:
We study the process of photodissociation of a molecular Bose-Einstein condensate as a potential source of strongly correlated twin atomic beams. We show that the two beams can possess nearly perfect quantum squeezing in their relative numbers.