831 resultados para BONE-SCREW
Resumo:
Poster. Introduction: One in five menand one half of women over the age of 50 will experience a bone fracture, whichis frequently accompanied by poor bone health. This combination of poor bonehealth and fracture is a two edge sword, because not only does poor bone healthmake fractures more likely, it also reduces the efficacy of standard fracturetreatments. Currently available surgical fixation devices that were originallydeveloped for healthy bone, such as pins, plates and bone screws, are often noteffective for patients with osteoporosis, resulting in unsatisfactory outcomesor longer and more painful recovery times. One major issue is the design ofbone screws, which can loosen or pull-out from osteoporotic bone. Osteopenicscrews with larger outer thread diameters have been developed to try andaddress this problem. The larger diameter screws have been shown to be 60–70 %stronger in lab tests of individual screws but the larger diameter screwscannot be used with the standard spacing in fixation plates without the risk ofcausing fractures between the screws. In addition, many fractures occur nearjoints where there is not room to increase the spacing between screws.Therefore, new bone screws are needed for treatment of fractures in osteoporoticbone. Materials and Methods: Afterdeveloping a novel bone screw design, we fabricated screws using rapidprototyping methods. Screws were inserted into 10 pcf density sawbones polyurethanefoam as a model for osteoporotic bone. Pull-out tests were conducted using theprototype bone screw design and the standard screw design for comparison inaccordance with ASTM 543-13. Results and Discussion: Ourprototype screws have the same outer diameter as standard bone screws, but haveoptimised threads. For pull-out tests in 10 psf density sawbones poly-urethanefoam, the prototype screw design was 60 % stronger than the standard bone screwdesign (p<0.01). Conclusion: Our novel bonescrew design provides significant improvement in standard tests with syntheticbone material. Additional tests are needed to determine if the bone screwswould be suitable for human trials.
Resumo:
Cylindrical specimens of bone measuring 15 mm in diameter were obtained from the lateral cortical layer of 10 pairs of femurs and tibias. A central hole 3.2 mm in diameter was drilled in each specimen. The hole was tapped, and a 4.5 mm cortical bone screw was inserted from the outer surface. The montage was submitted to push-out testing up to a complete strip of the bone threads. The cortical thickness and rupture load were measured, and the shear stress was calculated. The results were grouped according to the bone segment from which the specimen was obtained. The results showed that bone cortex screw holding power is dependent on the bone site. Additionally, the diaphyseal cortical bone tissue is both quantitatively and qualitatively more resistant to screw extraction than the metaphyseal tissue.
Resumo:
We assess the effects of chemical processing, ethylene oxide sterilization, and threading on bone surface and mechanical properties of bovine undecalcified bone screws. In addition, we evaluate the possibility of manufacturing bone screws with predefined dimensions. Scanning electronic microscopic images show that chemical processing and ethylene oxide treatment causes collagen fiber amalgamation on the bone surface. Processed screws hold higher ultimate loads under bending and torsion than the in natura bone group, with no change in pull-out strength between groups. Threading significantly reduces deformation and bone strength under torsion. Metrological data demonstrate the possibility of manufacturing bone screws with standardized dimensions.
The effect of locked screw angulation on the biomechanical properties of the S.P.S. Free-Block plate
Resumo:
Objectives: Among the locked internal fixators is one denominated S.P.S. (Synthesis Pengo System) Free-Block, which was designed with a locking ring that allows the screw to be locked and positioned obliquely. Due to the paucity of biomechanical studies on this system, the present work aimed to evaluate the influence of locked screw angulation on the resistance of the S.P.S. Free--Block plate. Methods: Forty synthetic bone cylinders with 10 mm fracture gap were used. Forty seven-hole 3.5 mm stainless steel plates (two AO-like dynamic compression holes and five locked holes) were assembled according to the orientation of the locked screws: mono cortical screws were positioned at 90° to the long axis of the cylinder (Group 1), and monocortical screws were positioned at 70° to its cylinder long axis (Group 2). In both groups, AO-like dynamic compression hole screws were positioned bicortically and neutrally. For each group, six specimens were tested until failure, three in bending and three in compression, to determine the loads for fatigue testing. Subsequently, for each group, 14 specimens were tested for failure --seven by bending and seven in compression. Results: No significant failure differences were observed between Groups 1 and 2 under static-loading or fatigue test. Clinical significance: In a fracture gap model the orientation of the locked monocortical screws did not show any influence on the mechanical performance of the S.P.S. Free-Block to tests of axial compression and four-point bending. © Schattauer 2013.
Resumo:
More than 250,000 hip fractures occur annually in the United States and the most common fracture location is the femoral neck, the weakest region of the femur. Hip fixation surgery is conducted to repair hip fractures by using a Kirschner (K-) wire as a temporary guide for permanent bone screws. Variation has been observed in the force required to extract the K-wire from the femoral head during surgery. It is hypothesized that a relationship exists between the K-wire pullout force and the bone quality at the site of extraction. Currently, bone mineral density (BMD) is used as a predictor for bone quality and strength. However, BMD characterizes the entire skeletal system and does not account for localized bone quality and factors such as lifestyle, nutrition, and drug use. A patient’s BMD may not accurately describe the quality of bone at the site of fracture. This study aims to investigate a correlation between the force required to extract a K-wire from femoral head specimens and the quality of bone. A procedure to measure K-wire pullout force was developed and tested with pig femoral head specimens. The procedure was implemented on 8 human osteoarthritic femoral head specimens and the average pullout force for each ranged from 563.32 ± 240.38 N to 1041.01 ± 346.84 N. The data exhibited significant variation within and between each specimen and no statistically significant relationships were determined between pullout force and patient age, weight, height, BMI, inorganic to organic matter ratio, and BMD. A new testing fixture was designed and manufactured to merge the clinical and research environments by enabling the physician to extract the K-wire from each bone specimen himself. The new device allows the physician to gather tactile feedback on the relative ease of extraction while load history is recorded similar to the previous procedure for data acquisition. Future work will include testing human bones with the new device to further investigate correlations for predicting bone quality.
Resumo:
Objective: To introduce a new coupling system between screw driver and interference screw, and biomechanical tests that validate the safety of its application. Methods: The new system was submitted to biomechanical torsion assays. Two types of analysis were performed: maximum torque of manual insertion of the screws into bovine bone; destructive assays of torsion of the system using an INSTRON 55MT machine. The same tests were also performed on a control group, using a commercially available interference screw coupling system (Acufex (R)). Results: In the tests on manual insertion of screws in bovine femurs, the average values found with a digital torque meter were 1.958 N/m for Acufex (R) and 2.563 N/m for FMRP. Considering p>0.05, there were no statistical differences between the two groups (p=0.02) in the values for maximum torque of insertion, in the two systems studied. The average values for maximum torque of torsion resisted by the screw were 15N/m for the Acufex (R) screw and 13N/m for the FMRP screw, again with no statistical differences between the two groups (p>0.05). In the evaluation of angular deformation, there was also no significant difference between the two screw types (p=0.15). Conclusion: The new coupling system for interference screws developed at FMRP-USP revealed a torsion resistance that is comparable with the system already available on the market and regulated for international use.
Resumo:
The purpose of this study was to compare by qualitative histology the efficacy of rigid internal fixation with titanium system and the Lacto Sorb® system in mandibular fractures in rabbits. Thirty male adult rabbits Oryctolagus cuniculus were used. Unilateral mandibular osteotomies were performed between the canine and first premolar. The animals were divided into two groups: for Group I - rigid internal fixation was performed with titanium system 1.5 mm (Synthes, Oberdorf, Switzerland), with two screws of 6 mm (bicortical) on each side of the osteotomy. For Group II-rigid internal fixation was performed with PLLA/PGA system 1.5 mm (Lacto Sorb®, WLorenz, Jacksonville, FL, USA). The histological analysis evaluated the presence of inflammatory reaction, degree of bone healing and degree of resorption of the Lacto Sorb® screws. The results of both fixation systems were similar, only with a small difference after 15 and 30 days. In Group I a faster bony healing was noted. But after 60 days, bony healing was similar in both groups. It is concluded that both PLLA/PGA and titanium plates and screws provide sufficient strength to permit mandibular bone healing. The resorption process of PLLA/PGA osteosynthesis material did not cause acute or chronic inflammatory reaction or foreign body reaction during the studied period. © 2004 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Resumo:
Recent studies have evaluated many methods of internal fixation for sagittal split ramus osteotomy (SSRO), aiming to increase stability of the bone segments while minimizing condylar displacement. The purpose of this study was to evaluate, through biomechanical testing, the stability of the fixation comparing a specially designed bone plate to other two commonly used methods. Thirty hemimandibles were separated into three equal groups. All specimens received SSRO. In Group I the osteotomies were fixed with three 15 mm bicortical positional screws in an inverted-L pattern with an insertion angle of 90°. In Group II, fixation was carried out with a four-hole straight plate and four 6 mm monocortical screws. In Group III, fixation was performed with an adjustable sagittal plate and eight 6 mm monocortical screws. Hemimandibles were submitted to vertical compressive loads, by a mechanical testing unit. Averages and standard deviations were submitted to analysis of variance using the Tukey test with a 5% level of significance. Bicortical screws presented the greatest values of loading resistance. The adjustable miniplate demonstrated 60% lower resistance compared to bicortical screws. Group II presented on average 40% less resistant to the axial loading. © 2012 International Association of Oral and Maxillofacial Surgeons.
Resumo:
Bars and steel wires are the most commonly used methods to achieve maxillomandibular fixation, although there are numerous alternatives described for this same purpose. In cases of edentulous candidates for the conservative treatment of facial fractures, none of the conventional methods can be instituted for maxillomandibular fixation. Fixation in such cases is achieved with the aid of the total dentures of the patient or the confection of splints, but these methods lead to eating and oral hygiene problems. This article reports the case of an edentulous patient with a comminuted mandible fracture treated with a rarely described technique in which intermaxillary fixation was achieved with titanium miniplates.
Resumo:
STUDY DESIGN.: Cadaver study. OBJECTIVE.: To determine bone strength in vertebrae by measuring peak breakaway torque or indentation force using custom-made pedicle probes. SUMMARY OF BACKGROUND DATA.: Screw performance in dorsal spinal instrumentation is dependent on bone quality of the vertebral body. To date no intraoperative measuring device to validate bone strength is available. Destructive testing may predict bone strength in transpedicular instrumentations in osteoporotic vertebrae. Insertional torque measurements showed varying results. METHODS.: Ten human cadaveric vertebrae were evaluated for bone mineral density (BMD) measurements by quantitative computed tomography. Peak torque and indentation force of custom-made probes as a measure for mechanical bone strength were assessed via a transpedicular approach. The results were correlated to regional BMD and to biomechanical load testing after pedicle screw implementation. RESULTS.: Both methods generated a positive correlation to failure load of the respective vertebrae. The correlation of peak breakaway torque to failure load was r = 0.959 (P = 0.003), therewith distinctly higher than the correlation of indentation force to failure load, which was r = 0.690 (P = 0.040). In predicting regional BMD, measurement of peak torque also performed better than that of indentation force (r = 0.897 [P = 0.002] vs. r = 0.777 [P = 0.017]). CONCLUSION.: Transpedicular measurement of peak breakaway torque is technically feasible and predicts reliable local bone strength and implant failure for dorsal spinal instrumentations in this experimental setting.
Resumo:
OBJECTIVE: To describe the most reliable insertion angle, corridor length and width to place a ventral transarticular atlantoaxial screw in miniature breed dogs. STUDY DESIGN: Retrospective CT imaging study. SAMPLE POPULATION: Cervical CT scans of toy breed dogs (n = 21). METHODS: Dogs were divided into 2 groups--group 1: no atlantoaxial abnormalities; group 2: atlantoaxial instability. Insertion angle in medial to lateral and ventral to dorsal direction was measured in group 1. Corridor length and width were measured in groups 1 and 2. Corridor width was measured at 3 points of the corridor. Each variable was measured 3 times and the mean used for statistical analysis. RESULTS: Mean +/- SD optimal transarticular atlantoaxial insertion angle was determined to be 40 +/- 1 degrees in medial to lateral direction from the midline and 20 +/- 1 degrees in ventral to dorsal direction from the floor of the neural canal of C2. Mean corridor length was 7 mm (range, 4.5-8.0 mm). Significant correlation was found between corridor length, body weight, and age. Mean bone corridor width ranged from 3 to 5 mm. Statistically significant differences were found between individuals, gender and measured side. CONCLUSIONS: Optimal placement of a transarticular screw for atlantoaxial joint stabilization is very demanding because the screw path corridor is very narrow.
Resumo:
It has recently been reported that machined and microrough (micro) Brazilian titanium (Ti) implants have good production standards. The aim of this study was to evaluate in vivo bone formation around 2 different implant surfaces placed in dog's mandible. Thirty-two screw-typed Ti implants were used in this study. Mandibular premolars were extracted in 8 dogs and, after 12 weeks, 2 machined (Neodent Titamax, Brazil) and 2 micro implants (Neodent Titamax Porous, Brazil) were placed in each animal. Biopsies were taken at 3 and 8 weeks post-implantation and stained with Stevenel's blue and Alizarin red for histomorphometric measurements of bone-to-implant contact (BIC), bone area between threads (BABT) and bone area within the mirror area (BAMA). Data were analyzed statistically by two-way ANOVA (α=0.05). While at 3 weeks micro implants exhibited significantly more BIC than machined ones (55 ± 12.5% and 35.6 ± 15%, p<0.05), no significant difference in such parameter was detected at 8 weeks (51.2 ± 21% and 48.6 ± 18.1%, p>0.05). There were no significant differences in BABT and BAMA between the implants. Micro surfaces promoted higher contact osteogenesis. These data indicate that this commercial micro Ti implant surface enhances contact osteogenesis at an early post-implantation period when compared to the machined one.
Resumo:
We conducted a prospective randomised study comparing the clinical, functional and radiographic results of 46 patients treated for scaphoid nonunion using a vascularised bone graft from the dorsal and distal aspect of the radius (group I), relative to 40 patients treated by means of a conventional non-vascularised bone graft from the distal radius (group II). Surgical findings included 30 sclerotic, poorly-vascularised scaphoids in group I versus 20 in group II. Bone fusion was achieved in 89.1% of group I and 72.5% of group II patients (p = 0.024). Functional results were good to excellent in 72.0% of the patients in group I and 57.5% in group II. Considering only patients with sclerotic, poorly-vascularised scaphoids, the mean final outcome scores obtained were 7.5 and 6.0 for groups I and group II, respectively. We conclude that vascularised bone grafting yields superior results and is more efficient when there is a sclerotic, poorly-vascularised proximal pole in patients in scaphoid nonunion.