985 resultados para BONE-MARROW STROMA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine whether bone marrow-derived cells can differentiate into myofibroblasts, as defined by alpha-smooth muscle actin (SMA) expression, that arise in the corneal stroma after irregular phototherapeutic keratectomy and whose presence within the cornea is associated with corneal stromal haze. C578L/6J-GFP chimeric mice were generated through bone marrow transplantation from donor mice that expressed enhanced green fluorescent protein (GFP) in a high proportion of their bone marrow-derived cells. Twenty-four GFP chimeric mice underwent haze-generating corneal epithelial scrape followed by irregular phototherapeutic keratectomy (PTK) with an excimer laser in one eye. Mice were euthanized at 2 weeks or 4 weeks after PTK and the treated and control contralateral eyes were removed and cryo-preserved for sectioning for immunocytochemistry. Double immunocytochemistry for GFP and myofibroblast marker alpha-smooth muscle actin (SMA) were performed and the number of SMA+GFP+, SMA+GFP, SMA-GFP+ and SMA GFP cells, as well as the number of DAPI+ cell nuclei, per 400x field of stroma was determined in the central, mid-peripheral and peri-limbal cornea. In this mouse model, there were no SMA+ cells and only a few GFP+ cells detected in unwounded control corneas. No SMA+ cells were detected in the stroma at two weeks after irregular PTK, even though there were numerous GFP+ cells present. At 4 weeks after irregular PTK, all corneas developed mild to moderately severe corneal haze. In each of the three regions of the corneas examined, there were on average more than 9x more SMA+GFP+ than SMA+GFP myofibroblasts. This difference was significant (p < 0.01). There were significantly more (p < 0.01) SMA GFP+ cells, which likely include inflammatory cells, than SMA+GFP+ or SMA+GFP cells, although SMA GFP cells represent the largest population of cells in the corneas. In this mouse model, the majority of myofibroblasts developed from bone marrow-derived cells. It is possible that all myofibroblasts in these animals developed from bone marrow-derived cells since mouse chimeras produced using this method had only 60-95% of bone marrow-derived cells that were GFP+ and it is not possible to achieve 100% chimerization. This model, therefore, cannot exclude the possibility of myofibroblasts also developed from keratocytes and/or corneal fibroblasts. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Summary The transcription factor and proto-oncogene c-myc plays an important role in integrating many mitogenic signals within the cell. The consequences are both broad and varied and include the regulation of apoptosis, cellular differentiation, cellular growth and cell cycle progression. It is found to be mis-regulated in over 70% of all cancers, however, our knowledge about c-Myc remains limited and very little is known about its physiological role in mammalian development and in adulthood. We have addressed the physiological role of c-Myc in both the bone marrow and the liver of mice by generating adult c-myc flox/flox mice that lacked c-myc in either the bone marrow or the liver after conversion of the c-myc flox alleles into null alleles by the inducible Mx¬Cre transgene with polyI-polyC. In investigating the role of c-Myc in the haematopoietic system, we concentrated on the aspects of cellular proliferation, cellular differentiation and apoptosis. Mice lacking c-Myc develop anaemia between 3-8 weeks and all more differentiated cell types are severely depleted leading to death. However in addition to its role in driving proliferation in transient amplifying cells, we unexpectedly discovered a new role for c-Myc in controlling haematopoietic stem cell (HSC) differentiation. c-Myc deficient HSCs are able to proliferate normally in vivo. In addition, their differentiation into more committed progenitors is blocked. These cells expressed increased adhesion molecules, which possibly prevent HSCs from being released from the special stem cell supporting stromal niche cells with which they closely associate. Secondly we used the liver as a model system to address the role of c-Myc in cellular growth, meaning the increase in cell size, and also cellular proliferation. Our results revealed c-Myc to play no role in metabolic cellular growth following a period of fasting. Following treatment with the xenobiotic TCPOBOP, c-Myc deficient hepatocytes increased in cell size as control hepatocytes and could surprisingly proliferate albeit at a reduced rate demonstrating a c-Myc independent proliferation pathway to exist in parenchymal cells. However, following partial hepatectomy, in which two-thirds of the liver was removed, mutant livers were severely restricted in their regeneration capacity compared to control livers demonstrating that c-Myc is essential for liver regeneration. Résumé Le facteur de transcription et proto-oncogène c-myc joue un rôle important dans l'intégration de nombreux signaux mitogéniques dans la cellule. Les conséquences de son activation sont étendues et variées et incluent la régulation de l'apoptose, de la différenciation, de la croissance et de la progression du cycle cellulaire. Même si plus de 20% des cancers montrent une dérégulation de c-myc, les connaissances sur ce facteur de transcription restent limitées et ses rôles physiologiques au cours du développement et chez l'adulte sont très peu connus. Nous avons étudié le rôle physiologique de c-Myc dans la molle osseuse et le foie murin en générant des souris adultes c-myc flox/flox. Dans ces souris, les allèles c-myc flox sont convertis en allèles nuls par le transgène Mx-Cre après induction avec du Poly-I.C. Pour notre étude du rôle de c-Myc dans le système hématopoiétique, nous nous sommes concentrés sur les aspects de la prolifération et de la différenciation cellulaire, ainsi que sur l'apoptose. Les souris déficientes pour c-Myc développent une anémie 3 à 8 semaines après la délétion du gène; tous les différents types cellulaires matures sont progressivement épuisés ce qui entraîne la mort des animaux. Néanmoins, outre sa capacité à induire la prolifération des cellules transitoires de la molle osseuse, nous avons inopinément découvert un nouveau rôle pour c-Myc dans le contrôle de la différenciation des cellules souches hématopoiétiques (HSC). Les HSC déficientes pour c-Myc prolifèrent normalement in vivo mais leur différenciation en progéniteurs plus engagés dans une voie de différenciation est bloquée. Ces cellules surexpriment certaines molécules d'adhésion ce qui empêcherait les HSC d'être relachées du stroma spécialisé, ou niche, auquel elles sont étroitement associées. D'autre part, nous avons utilisé le foie comme système modèle pour étudier le rôle de c-Myc dans la prolifération et dans la croissance cellulaire, c'est à dire l'augmentation de taille des cellules. Nos résultats ont révélé que c-Myc ne joue pas de rôle dans le métabolisme cellulaire qui suit une période de jeûne. L'augmentation de la taille cellulaire des hépatocytes déficients pour c-Myc suite au traitement avec l'agent xénobiotique TCPOBOP est identique à celle observée pour les cellules de contrôle. Le taux de prolifération des hépatocytes mutants est par contre réduit, indiquant qu'une voie de différenciation indépendante de c-Myc existe dans les cellules parenchymales. Néanmoins, après hépatectomie partielle, où deux-tiers du foie sont éliminés chirurgicalement, les foies mutants sont sévèrement limités dans leur capacité de régénération par rapport aux foies de contrôle, montrant ainsi que c-Myc est essentiel pour la régénération hépatique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective lodgement or homing of transplanted hemopoietic stem cells in the recipient's bone marrow (BM) is a critical step in the establishment of long-term hemopoiesis after BM transplantation. However, despite its biologic and clinical significance, little is understood about the process of homing. In the present study, we have concentrated on the initial stages of homing and explored the functional role in vivo of some of the adhesion pathways previously found to mediate in vitro adhesion of hemopoietic cells to cultured BM stroma. We have found that homing of murine hemopoietic progenitors of the BM of lethally irradiated recipients at 3 h after transplant was significantly reduced after pretreatment of the donor cells with an antibody to the integrin very late antigen 4 (VLA4). This inhibition of marrow homing was accompanied by an increase in hemopoietic progenitors circulating in the blood and an increased uptake of these progenitors by the spleen. Similar results were obtained by treatment of the recipients with an antibody to vascular cell adhesion molecule 1 (VCAM-1), a ligand for VLA4. Furthermore, we showed that administration of the same antibodies (anti-VLA4 or anti-VCAM-1) to normal animals causes mobilization of hemopoietic progenitors into blood. These data suggest that hemopoietic cell lodgement in the BM is a regulatable process and can be influenced by VLA4/VCAM-1 adhesion pathway. Although additional molecular pathways are not excluded and may be likely, our data establish VCAM-1 as a BM endothelial addressin, analogous to the role that mucosal addressin cell adhesion molecule (MAdCAM) plays in lymphocyte homing. Whether splenic uptake of hemopoietic progenitors is passive or controlled through different mechanisms remains to be clarified. In addition, we provide experimental evidence that homing and mobilization are related phenomena involving, at least partly, similar molecular pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An unusual presentation of a focal osteoporotic bone marrow defect (FOBMD) of the mandible mimicking a cystic lesion is documented. A definitive diagnosis could be established only on the basis of the histopathologic evaluation. A 66-year-old Brazilian woman was referred by her dentist for well-defined radiolucency of the mandibular molar region suggesting a cystic lesion of odontogenic origin. The computed tomography scan confirmed that the lesion did not affect the corticals. The biopsy confirmed the diagnosis of FOBMD. The diagnostic difficulty in the current case is obvious, because FOBMD, usually exhibiting an ill-defined radiolucency, is seldom suspected preoperatively when a differential diagnosis is considered for focal well-defined radiolucent areas in the jaws.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work compared the local injection of mononuclear cells to the spinal cord lateral funiculus with the alternative approach of local delivery with fibrin sealant after ventral root avulsion (VRA) and reimplantation. For that, female adult Lewis rats were divided into the following groups: avulsion only, reimplantation with fibrin sealant; root repair with fibrin sealant associated with mononuclear cells; and repair with fibrin sealant and injected mononuclear cells. Cell therapy resulted in greater survival of spinal motoneurons up to four weeks post-surgery, especially when mononuclear cells were added to the fibrin glue. Injection of mononuclear cells to the lateral funiculus yield similar results to the reimplantation alone. Additionally, mononuclear cells added to the fibrin glue increased neurotrophic factor gene transcript levels in the spinal cord ventral horn. Regarding the motor recovery, evaluated by the functional peroneal index, as well as the paw print pressure, cell treated rats performed equally well as compared to reimplanted only animals, and significantly better than the avulsion only subjects. The results herein demonstrate that mononuclear cells therapy is neuroprotective by increasing levels of brain derived neurotrophic factor (BDNF) and glial derived neurotrophic factor (GDNF). Moreover, the use of fibrin sealant mononuclear cells delivery approach gave the best and more long lasting results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently proposed a new surgical approach to treat ventral root avulsion, resulting in motoneuron protection. The present work combined such a surgical approach with bone marrow mononuclear cells (MC) therapy. Therefore, MC were added to the site of reimplantation. Female Lewis rats (seven weeks old) were subjected to unilateral ventral root avulsion (VRA) at L4, L5 and L6 levels and divided into the following groups (n = 5 for each group): Avulsion, sealant reimplanted roots and sealant reimplanted roots plus MC. After four weeks and 12 weeks post-surgery, the lumbar intumescences were processed by transmission electron microscopy, to analyze synaptic inputs to the repaired α motoneurons. Also, the ipsi and contralateral sciatic nerves were processed for axon counting and morphometry. The ultrastructural results indicated a significant preservation of inhibitory pre-synaptic boutons in the groups repaired with sealant alone and associated with MC therapy. Moreover, the average number of axons was higher in treated groups when compared to avulsion only. Complementary to the fiber counting, the morphometric analysis of axonal diameter and g ratio demonstrated that root reimplantation improved the motor component recovery. In conclusion, the data herein demonstrate that root reimplantation at the lesion site may be considered a therapeutic approach, following proximal lesions in the interface of central nervous system (CNS) and peripheral nervous system (PNS), and that MC therapy does not further improve the regenerative recovery, up to 12 weeks post lesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The broad use of transgenic and gene-targeted mice has established bone marrow-derived macrophages (BMDM) as important mammalian host cells for investigation of the macrophages biology. Over the last decade, extensive research has been done to determine how to freeze and store viable hematopoietic human cells; however, there is no information regarding generation of BMDM from frozen murine bone marrow (BM) cells. Here, we establish a highly efficient protocol to freeze murine BM cells and further generate BMDM. Cryopreserved murine BM cells maintain their potential for BMDM differentiation for more than 6 years. We compared BMDM obtained from fresh and frozen BM cells and found that both are similarly able to trigger the expression of CD80 and CD86 in response to LPS or infection with the intracellular bacteria Legionella pneumophila. Additionally, BMDM obtained from fresh or frozen BM cells equally restrict or support the intracellular multiplication of pathogens such as L. pneumophila and the protozoan parasite Leishmania (L.) amazonensis. Although further investigation are required to support the use of the method for generation of dendritic cells, preliminary experiments indicate that bone marrow-derived dendritic cells can also be generated from cryopreserved BM cells. Overall, the method described and validated herein represents a technical advance as it allows ready and easy generation of BMDM from a stock of frozen BM cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Mast cells have recently gained new importance as immunoregulatory cells that are involved in numerous pathological processes. One result of these processes is an increase in mast cell numbers at peripheral sites. This study was undertaken to determine the mast cell response in the peritoneal cavity and bone marrow during repopulation of the peritoneal cavity in rats. Results: Two mast cell specific antibodies, mAb AA4 and mAb BGD6, were used to distinguish the committed mast cell precursor from more mature mast cells. The peritoneal cavity was depleted of mast cells using distilled water. Twelve hours after distilled water injection, very immature mast cells could be isolated from the blood and by 48 hours were present in the peritoneal cavity. At this same time the percentage of mast cells in mitosis increased fourfold. Mast cell depletion of the peritoneal cavity also reduced the total number of mast cells in the bone marrow, but increased the number of mast cell committed precursors. Conclusions: In response to mast cell depletion of the peritoneal cavity, a mast cell progenitor is released into the circulation and participates in repopulation of the peritoneal cavity, while the committed mast cell precursor is retained in the bone marrow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The D-mannose binding lectin ArtinM is known to recruit neutrophils, to degranulate mast cells and may have potential therapeutic applications. However, the effect of ArtinM on mast cell recruitment has not been investigated. Methodology: Male Wistar rats were injected i.p. with ArtinM or ConA (control). The ability of the lectin to degranulate peritoneal and mesenteric mast cells was examined. Recruitment of mast cells to the peritoneal cavity and mesentery after ArtinM injection was examined with or without depletion of peritoneal mast cells by distilled water. Results: ArtinM degranulated both peritoneal and mesentery mast cells in vitro. Three days after i.p. injection of the lectin there were reduced numbers of mast cells in the peritoneal lavage, while at 7 days post injection of ArtinM, the number of peritoneal mast cells was close to control values. Since immature mast cells are recruited from the bone marrow, the effect of the lectin on bone marrow mast cells was examined. Injection of ArtinM resulted in an increased number of mast cells in the bone marrow. To determine if degranulation of mast cells in the peritoneal cavity was required for the increase in bone marrow mast cells, the peritoneal cavity was depleted of mast cells with ultrapure water. Exposure to ArtinM increased the number of mast cells in the bone marrow of rats depleted of peritoneal mast cells. Conclusions: The ArtinM induced recruitment of mast cells from the bone marrow to the peritoneal cavity may partially explain the therapeutic actions of ArtinM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To evaluate the expression of NF-kappa B pathway genes in total bone marrow samples obtained from MM at diagnosis using real-time quantitative PCR and to evaluate its possible correlation with disease clinical features and survival. Material and methods: Expression of eight genes related to NF-kappa B pathway (NFKB1, IKB, RANK, RANKL, OPG, IL6, VCAM1 and ICAM1) were studied in 53 bone marrow samples from newly diagnosed MM patients and in seven normal controls, using the Taqman system. Genes were considered overexpressed when tumor expression level was at least four times higher than that observed in normal samples. Results: The percentages of overexpression of the eight genes were: NFKB1 0%, IKB 22.6%, RANK 15.1%, RANKL 31.3%, OPG 7.5%, IL6 39.6%, VCAM1 10% and ICAM1 26%. We found association between IL6 expression level and International Staging System (ISS) (p = 0.01), meaning that MM patients with high ISS scores have more chance of overexpression of IL6. The mean value of ICAM1 relative expression was also associated with the ISS score (p = 0.02). Regarding OS, cases with IL6 overexpression present worse evolution than cases with IL6 normal expression (p = 0.04). Conclusion: We demonstrated that total bone marrow aspirates can be used as a source of material for gene expression studies in MM. In this context, we confirmed that IL6 overexpression was significantly associated with worse survival and we described that it is associated with high ISS scores. Also, ICAM1 was overexpressed in 26% of cases and its level was associated with ISS scores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During fetal development, mesenchymal progenitor (MP) cells are co-localized in major hematopoietic territories, such as yolk sac (YS), bone marrow (BM), liver (LV), and others. Studies using mouse and human MP cells isolated from fetus have shown that these cells are very similar but not identical to adult mesenchymal stem cells (MSC). Their differentiation potential is usually restricted to production of highly committed osteogenic and chondrogenic precursors. Such properties of fetal MP cells can be very useful for tissue regeneration, when a great number of committed precursors are required. The objectives of this study were to isolate and characterize MP cells from canine YS, BM, and LV in early and late stages of fetal development. Gestational stage was identified, and cell culture conditions were evaluated for efficient isolation of canine MP cells. All canine fetal MP cells expressed vimentin, nestin, and CD44 proteins. Cytokeratin 18 expression was observed in BM-and LV-MP cells, and vascular endothelial (VE)-cadherin expression was observed only in YS-MP cells. A small number of MP cells (5%) from LV and YS expressed Oct3/4 protein. The differentiation potential of canine fetal MP cells varied significantly: YS- and BM-MP cells differentiated into bone and cartilage, whereas LV-MP cells differentiation was limited to osteogenic fate. None of the canine fetal MP cells were able to differentiate into adipose cells. Our data suggest that canine fetal MP cells are an appropriate in vitro model to study MP biology from hematopoietic territories and they are a source of committed osteogenic and chondrogenic precursors for regenerative medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The purpose of this work was to evaluate the potential of substituting autogenous bone (AB) by bone marrow aspirate concentrate (BMAC). Both AB and BMAC were tested in combination with a bovine bone mineral (BBM) for their ability of new bone formation (NBF) in a multicentric, randomized, controlled, clinical and histological noninferiority trial. Materials and Methods: Forty-five severely atrophied maxillary sinus from 26 patients were evaluated in a partial cross-over design. As test arm, 34 sinus of 25 patients were augmented with BBM and BMAC containing mesenchymal stem cells. Eleven control sinus from 11 patients were augmented with a mixture of 70% BBM and 30% AB. Biopsies were obtained after a 3-4-month healing period at time of implant placement and histomorphometrically analyzed for NBF. Results: NBF was 14.3%+/- 1.8% for the control and nonsignificantly lower (12.6%+/- 1.7%) for the test (90% confidence interval: -4.6 to 1.2). Values for BBM (31.3%+/- 2.7%) were significantly higher for the test compared with control (19.3%+/- 2.5%) (p < 0.0001). Nonmineralized tissue was lower by 3.3% in the test compared with control (57.6%; p = 0.137). Conclusions: NBF after 3-4 months is equivalent in sinus, augmented with BMAC and BBM or a mixture of AB and BBM. This technique could be an alternative for using autografts to stimulate bone formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed to evaluate cardiac morphology/function and histological changes induced by bone marrow cells (BMCs) and cultured mesenchymal stem cells (MSCs) injected at the myocardium of spontaneously hypertensive rats (SHR) submitted to surgical coronary occlusion. Female syngeneic adult SHR, submitted (MI) or not (C) to coronary occlusion, were treated 24 h later with in situ injections of normal medium (NM), or with MSCs (MSC) or BMCs (BM) from male rats. The animals were evaluated after 1 and 30 days by echocardiography, histology of heart sections and PCR for the Y chromosome. Improved ejection fraction and reduced left ventricle infarcted area were observed in MSC rats as compared to the other experimental groups. Treated groups had significantly reduced lesion tissue score, increased capillary density and normal (not-atrophied) myocytes, as compared to NM and C groups. The survival rate was higher in C, NM and MSC groups as compared to MI and BM groups. In situ injection of both MSCs and BMCs resulted in improved cardiac morphology, in a more physiological model of myocardial infarction represented by surgical coronary occlusion of spontaneously hypertensive rats. Only treatment with MSCs, however, ameliorated left ventricle dysfunction, suggesting a positive role of these cells in heart remodeling in infarcted hypertensive subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. Hematopoietic tissue requires a high nutrient supply, and a reduction in leukocytes, especially lymphocytes, suggests that some nutritional deficiencies might be altering bone marrow function and decreasing its ability to produce lymphocytes. In this study, we evaluated the effect that PEM has on lymphocyte subtypes and the cell cycle of CD5(+) cells. Methods: Swiss mice were subjected to PEM using a low-protein diet containing 4% protein. When the experimental group had lost about 20% of their original body weight, we collected blood and bone marrow cells and evaluated the hemogram, the myelogram, bone marrow lymphoid markers using flow cytometry, and the cell cycle in CD5(+) bone marrow. Results: Malnourished animals presented anemia, reticulocytopenia, and leukopenia with lymphopenia. The bone marrow was hypocellular, and flow cytometric analyses of bone marrow cells showed cells that were CD45(+) (91.2%), CD2(+) (84.9%), CD5(+) (37.3%), CD3(+) (23.5%), CD19(+) (43.3%), CD22(+) (34.7%), CD19(+)/CD2(+) (51.2%), CD19(+)/CD3(+)(24.0%), CD19(+)/CD5(+) (13.2%), CD22(+)/CD2(+) (40.1%), CD22(+)/CD3(+) (30.3%), and CD22(+)/CD5(+) (1.1%) in malnourished animals and CD45(+) (97.5%), CD2(+) (42.9%), CD5(+) (91.5%), CD3(+) (92.0%), CD19(+) (52.0%), CD22(+) (75.6%), CD19(+)/CD2(+) (62.0%), CD19(+)/CD3(+) (55.4%), CD19(+)/CO5(+) (6.7%), CD22(+)/CD2(+) (70.3%), CD22(+)/CD3(+) (55.9%), and CD22(+)/ CD5(+) (8.4%) in control animals. Malnourished animals also presented more CD5(+) cells in the G0 phase of cell cycle development. Conclusion: Malnourished animals presented bone marrow hypoplasia, maturation interruption, prominent lymphopenia with depletion in the lymphoid lineage, and changes in cellular development. We suggest that these changes are some of the primary causes of lymphopenia in cases of PEM and partly explain the increase in susceptibility to infections found in malnourished individuals. Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Looking for possible neuroimmune relationships, we analyzed the effects of methylenedioxymethamphetamine (MDMA) administration on neuroendocrine, neutrophil activity and leukocyte distribution in mice. Methods: Five experiments were performed. In the first, mice were treated with MDMA (10 mg/kg) 30, 60 min and 24 h prior to blood sample collection for neutrophil activity analysis. In the second experiment, the blood of nave mice was collected and incubated with MDMA for neutrophil activity in vitro analysis. In the third and fourth experiments, mice were injected with MDMA (10 mg/kg) and 60 min later, blood and brain were collected to analyze corticosterone serum levels and hypothalamic noradrenaline (NA) levels and turnover. In the last experiment, mice were injected with MDMA 10 mg/kg and 60 min later, blood, bone marrow and spleen were collected for leukocyte distribution analysis. Results: Results showed an increase in hypothalamic NA turnover and corticosterone serum levels 60 min after MDMA (10 mg/kg) administration, a decrease in peripheral blood neutrophil oxidative burst and a decrease in the percentage and intensity of neutrophil phagocytosis. It was further found that MDMA (10 mg/kg) treatment also altered leukocyte distribution in blood, bone marrow and spleen. In addition, no effects were observed for MDMA after in vitro exposure both in neutrophil oxidative burst and phagocytosis. Conclusion: The effects of MDMA administration (10 mg/kg) on neutrophil activity and leukocyte distribution might have been induced indirectly through noradrenergic neurons and/or hypothalamic-pituitary-adrenal axis activations. Copyright (C) 2009 S. Karger AG, Basel