998 resultados para BONE PLATES
Resumo:
This paper aims to review biomaterials used in manufacturing bone plates including advances in recent years and prospect in the future. It has found among all biomaterials, currently titanium and stainless steel alloys are the most common in production of bone plates. Other biomaterials such as Mg alloys, Ta alloys, SMAs, carbon fiber composites and bioceramics are potentially suitable for bone plates because of their advantages in biocompatibility, bioactivity and biodegradability. However, today either they are not used in bone plates or have limited applications in only some flexible small-size implants. This problem is mainly related to their poor mechanical properties. Additionally, production processes play an effective role. Therefore, in the future, further studies should be conducted to solve these problems and make them feasible for heavy-duty bone plates.
Resumo:
With many important developments over the last century, nowadays orthopedic bone plate now excels over other types of internal fixators in bone fracture fixation. The developments involve the design, material and implementation techniques of the plates. This paper aims to review the evolution in implementation technique and biomaterial of the orthopedic bone plates. Plates were initially used to fix the underlying bones firmly. Accordingly, Compression plate (CP), Dynamic compression plate (DCP), Limited contact dynamic compression plate (LC-DCP) and Point contact fixator (PC-Fix) were developed. Later, the implementation approach was changed to locking, and the Less Invasive Stabilization System (LISS) plate was introduced as a result. Finally, a combination of both of these approaches has been used by introducing the Locking Compression Plate (LCP). Currently, precontoured LCPs are mainly used for bone fracture fixation. In parallel with structure and implementation techniques, numerous advances have occurred in biomaterials of the plates. Titanium and stainless steel alloys are now the most common biomaterials in production of orthopedic bone plates. However, regarding the biocompatibility, bioactivity and biodegradability characteristics of Mg alloys, Ta alloys, SMAs, carbon fiber composites and bioceramics, these materials are considered as potentially suitable for plates. However, due to poor mechanical properties, they have very limited applications. Therefore, further studies are required in future to solve these problems and make them feasible for heavy-duty bone plates.
Resumo:
Distal tibial fractures are now commonly treated via intermedullary plate fixation due to higher rates of union and lower rates of postoperative complications. However, patient specific bone morphology demands manual deformation of the plate to ensure appropriate fit along the bone Distal tibial fractures are now commonly treated via intermedullary plate fixation due to higher rates of union and lower rates of postoperative complications. However, patient specific bone morphology demands manual deformation of the plate to ensure appropriate fit along the bone contours, and depending on the material of the plate, different outcomes have been reported along with postoperative complications. A comparative analysis of Stainless Steel 316L and Ti-6Al-4V alloys was carried to estimate the safe bending limit for appropriate fits. The results from the ANSYS FEA simulations were validated with experiments based on ASTM F382-99. It is found that SS316L is better suited for large deformations (up to 16˚ in proximal tip and 7.5˚ in distal end) and Ti for smaller deformation contours (up to 3˚ in proximal tip and 1.8˚ in distal end). The results of this study have profound implications for the choice of plates based on preliminary radiographical fracture examinations to ensure better fixation and higher rates of union of distal tibial fractures.
Resumo:
Currently, finite element analyses are usually done by means of commercial software tools. Accuracy of analysis and computational time are two important factors in efficiency of these tools. This paper studies the effective parameters in computational time and accuracy of finite element analyses performed by ANSYS and provides the guidelines for the users of this software whenever they us this software for study on deformation of orthopedic bone plates or study on similar cases. It is not a fundamental scientific study and only shares the findings of the authors about structural analysis by means of ANSYS workbench. It gives an idea to the readers about improving the performance of the software and avoiding the traps. The solutions provided in this paper are not the only possible solutions of the problems and in similar cases there are other solutions which are not given in this paper. The parameters of solution method, material model, geometric model, mesh configuration, number of the analysis steps, program controlled parameters and computer settings are discussed through thoroughly in this paper.
Resumo:
Studies on quantitative fit analysis of precontoured fracture fixation plates emerged within the last few years and therefore, there is a wide research gap in this area. Quantitative fit assessment facilitates the measure of the gap between a fracture fixation plate and the underlying bone, and specifies the required plate fit criteria. For clinically meaningful fit assessment outcome, it is necessary to establish the appropriate criteria and parameter. The present paper studies this subject and recommends using multiple fit criteria and the maximum distance between the plate and underlying bone as fit parameter for clinically relevant outcome. We also propose the development of a software tool for automatic plate positioning and fit assessment for the purpose of implant design validation and optimization in an effort to provide better fitting implant that can assist proper fracture healing. The fundamental specifications of the software are discussed.
Resumo:
Background: Recent studies in animals have shown pronounced resorption of buccal bone plate after immediate implantation. The sectioning of experimental material for histologic evaluation of the bone plates could provide valuable information about the possible effect of bone exposure in periodontal and implant surgeries. Methods: Twenty-four incisors were collected from dogs. After decalcification, the blocks were immersed in paraffin and bucco-lingual histologic sections were examined under light microscope. Some sections were reserved for immunohistochemical analysis. Results: The bone density, the width of the bone plates, and the percentage of vessels presented in the periodontal ligament and periosteum were analyzed in the buccal and lingual bone plates, which were divided corono-apically into thirds. The buccal bone plates showed statistically higher bone density compared to the lingual bone plates in the coronal thirds. The width of both bone plates increased from the coronal to the apical third, but all the buccal thirds were significantly thinner compared to the lingual thirds. No statistically significant differences were found between the bone plates for the percentage of area occupied by the blood vessels in the periodontal ligament or periosteum. Conclusion: It is reasonable to conclude that the higher bone density, represented by the lower number of marrow spaces, in association with the thinner aspect of the buccal bone plates made them more fragile to absorb compared to the lingual bone plates, especially during mucoperiosteal procedures. J Periodontol 2017;82:872-877.
Resumo:
Purpose: This paper reviews the apparatus used for deformation of bone fracture fixation plates during orthopaedic surgeries including surgical irons, pliers and bending press tools. This paper extends the review to various machineries in non-medical industries and adopts their suitability to clinics-related applications and also covers the evolution of orthopaedic bone plates. This review confirms that none of the studied machineries can be implemented for the deformation of bone fracture fixation plates during orthopaedic surgeries. In addition, this paper also presents the novel apparatus that are designed from scratch for this specific purpose. Several conceptual designs have been proposed and evaluated recently. It has been found that Computer Numerical Control (CNC) systems are not the golden solution to this problem and one needs to attempt to design the robotic arm system. A new design of robotic arm that can be used for facilitating orthopaedic surgeries is being completed.
Resumo:
The aim of this study was to perform a physicochemical and morphological characterization and compare the mechanical behavior of an experimental Ti-Mo alloy to the analogous metallic Ti-based fixation system, for mandibular angle fractures. Twenty-eight polyurethane mandibles were uniformly sectioned on the left angle. These were divided into 4 groups: group Eng 1P, one 2.0-mm plate and 4 screws 6 mm long; group Eng 2P, two 2.0-mm plates, the first fixed with 4 screws 6 mm long and the second with 4 screws 12 mm long. The same groups were created for the Ti-15Mo alloy. Each group was subjected to linear vertical loading at the first molar on the plated side in a mechanical testing unit. Means and standard deviations were compared with respect to statistical significance using ANOVA. The chemical composition of the Ti-15Mo alloy was close to the nominal value. The mapping of Mo and Ti showed a homogeneous distribution. SEM of the screw revealed machining debris. For the plates, only the cpTi plate undergoes a surface treatment. The metallographic analysis reveals granular microstructure, from the thermomechanical trials. A statistically significant difference was found (P < 0.05) when the comparison between both internal fixation techniques was performed. The 2P technique showed better mechanical behavior than 1P.
Resumo:
The aim of this study was to analyze, through Vickers hardness test and photoelasticity analysis, pre-bent areas, manually bent areas, and areas without bends of 10-mm advancement pre-bent titanium plates (Leibinger system). The work was divided into three groups: group I-region without bend, group II-region of 90° manual bend, and group III-region of 90° pre-fabricated bends. All the materials were evaluated through hardness analysis by the Vickers hardness test, stress analysis by residual images obtained in a polariscope, and photoelastic analysis by reflection during the manual bending. The data obtained from the hardness tests were statistically analyzed using ANOVA and Tukey's tests at a significance level of 5 %. The pre-bent plate (group III) showed hardness means statistically significantly higher (P < 0.05) than those of the other groups (I-region without bends, II-90° manually bent region). Through the study of photoelastic reflection, it was possible to identify that the stress gradually increased, reaching a pink color (1.81 δ / λ), as the bending was performed. A general analysis of the results showed that the bent plate region of pre-bent titanium presented the best results.
Resumo:
Objective: An experimental in vitro study was carried out to evaluate the influence of cortical bone thickness on ultrasound propagation velocity. Methods: Sixty bone plates were used, made from bovine femurs, with thickness ranging from 1 to 6 mm (10 of each). The ultrasound velocity measurements were performed using a device specially designed for this purpose, in an underwater acoustic tank and with direct contact using contact gel. The transducers were positioned in two ways: on opposite sides, with the bone between them, for the transverse measurement; and parallel to each other, on the same side of the bone plates, for the axial measurements. Results: In the axial transmission mode, the ultrasound velocity speed increased with cortical bone thickness, regardless of the distance between the transducers, up to a thickness of 5 mm, then remained constant thereafter. There were no changes in velocity when the transverse measures were made. Conclusion: Ultrasound velocity increased with cortical bone thickness in the axial transmission mode, until the thickness surpasses the wavelength, after which point it remained constant. Level of Evidence: Experimental Study.
Resumo:
SUMMARY: Fracture stabilization in the diabetic patient is associated with higher complication rates, particularly infection and impaired wound healing, which can lead to major tissue damage, osteomyelitis, and higher amputation rates. With an increasing prevalence of diabetes and an aging population, the risks of infection of internal fixation devices are expected to grow. Although numerous retrospective clinical studies have identified a relationship between diabetes and infection, currently there are few animal models that have been used to investigate postoperative surgical-site infections associated with internal fixator implantation and diabetes. The authors therefore refined the protocol for inducing hyperglycemia and compared the bacterial burden in controls to pharmacologically induced type 1 diabetic rats after undergoing internal fracture plate fixation and Staphylococcus aureus surgical-site inoculation. Using an initial series of streptozotocin doses, followed by optional additional doses to reach a target blood glucose range of 300 to 600 mg/dl, the authors reliably induced diabetes in 100 percent of the rats (n = 16), in which a narrow hyperglycemic range was maintained 14 days after onset of diabetes (mean ± SEM, 466 ± 16 mg/dl; coefficient of variation, 0.15). With respect to their primary endpoint, the authors quantified a significantly higher infectious burden in inoculated diabetic animals (median, 3.2 × 10 colony-forming units/mg dry tissue) compared with inoculated nondiabetic animals (7.2 × 10 colony-forming units/mg dry tissue). These data support the authors' hypothesis that uncontrolled diabetes adversely affects the immune system's ability to clear Staphylococcus aureus associated with internal hardware.
Resumo:
BACKGROUND: In patients with myelomeningocele (MMC), a high number of fractures occur in the paralyzed extremities, affecting mobility and independence. The aims of this retrospective cross-sectional study are to determine the frequency of fractures in our patient cohort and to identify trends and risk factors relevant for such fractures. MATERIALS AND METHODS: Between March 1988 and June 2005, 862 patients with MMC were treated at our hospital. The medical records, surgery reports, and X-rays from these patients were evaluated. RESULTS: During the study period, 11% of the patients (n = 92) suffered one or more fractures. Risk analysis showed that patients with MMC and thoracic-level paralysis had a sixfold higher risk of fracture compared with those with sacral-level paralysis. Femoral-neck z-scores measured by dual-energy X-ray absorptiometry (DEXA) differed significantly according to the level of neurological impairment, with lower z-scores in children with a higher level of lesion. Furthermore, the rate of epiphyseal separation increased noticeably after cast immobilization. Mainly patients who could walk relatively well were affected. CONCLUSIONS: Patients with thoracic-level paralysis represent a group with high fracture risk. According to these results, fracture and epiphyseal injury in patients with MMC should be treated by plaster immobilization. The duration of immobilization should be kept to a minimum (<4 weeks) because of increased risk of secondary fractures. Alternatively, patients with refractures can be treated by surgery, when nonoperative treatment has failed.
Resumo:
A swing-lock denture is useful in partially dentate patients where the configuration of the remaining teeth means that either the retention or stability available for a conventional removable partial denture is compromised. Such removable prostheses can also prove to be extremely useful when providing prosthodontic rehabilitation following surgical resection of oral cancer. A 20 year-old patient was referred to the Restorative Department of Cork University Dental Hospital following segmental mandibulectomy to treat a calicifying epithelial odontogenic tumour (Pindborg Tumour). Initial treatment using a conventional lower partial denture failed. This paper outlines the successfully rehabilitation using a lower Cobalt-Chromium swing-lock partial denture.
Resumo:
O presente trabalho tem como objectivo o estudo, desenvolvimento e aplicações na área da biomecânica de sensores intrínsecos baseados em redes de Bragg em fibras ópticas (FBG). As aplicações são feitas em modelos biomecânicos in vitro tais como: implantes de anca, prótese de joelho, placas de osteossíntese e implantes dentários. A optimização do desenvolvimento de próteses e respectivos elementos de fixação é actualmente dependente da geração e validação experimental de seus modelos computacionais. A validação destes modelos é normalmente feita utilizando-se dados de ensaios não invasivos e invasivos em modelos sintéticos. Em ensaios in vitro os sensores convencionais têm um princípio de funcionamento eléctrico e apresentam por vezes dimensões inadequadas. Existem situações exploradas no presente trabalho, tais como sensoriamento de superfícies irregulares e junções ou ainda análises de deformações internas, onde é recomendável a utilização de sensores FBG, pois apresentam dimensões reduzidas e flexibilidade o que permite efectuar medidas localizadas. O desenvolvimento de um protocolo de utilização de FBG e a sua aplicação no contexto apresentado demonstrou-se mais adequado, pela precisão e segurança futura oferecidas. Foi desenvolvida uma metodologia experimental para medidas de deformações utilizando FBG ao longo de uma placa de osteossíntese metálica aparafusada a um fémur sintético fracturado. Foi efectuada a monitorização da cura do cimento ósseo utilizado como fixador do prato tibial na artroplastia total do joelho através da medida da sua contracção e temperatura. Foi também desenvolvido um sistema refrigerador com resposta às leituras de temperatura com vista a evitar a necrose do osso. Foram efectuados estudos de deformação nesse cimento após a sua cura, como resultado da aplicação de cargas mecânicas estáticas. Foram efectuados estudos da cura de cimento ósseo aplicado a próteses de anca e também de deformações nestas próteses. Foi ainda efectuado o estudo comparativo de vários implantes dentários através da medida da distribuição de deformações como resposta a excitações mecânicas impulsivas. Para a desmodulação das FBG foram inicialmente utilizados sistemas comerciais. Entretanto algumas aplicações não puderam ser implementadas com estes sistemas comerciais devido à baixa reflectividade das FBG utilizadas, mas fundamentalmente devido à necessidade de executar testes com uma taxa de aquisição maior do que os 5 Hz disponíveis (cerca de 15 kHz). Por estes motivos foi desenvolvido um sistema optoelectrónico completo de desmodulação de FBG baseado num filtro sintonizável e que tem como característica principal a alta taxa de aquisição (até 1,2 MHz) mas também se destaca pela facilidade na reconfiguração dos parâmetros de leitura, pela apresentação duma interface de utilizador amigável e pela capacidade de operar com até 5 FBG na mesma fibra óptica.
Resumo:
Fractures of the mandibular angle deserve particular attention because they represent the highest percentage of mandibular fractures and have the highest postsurgical complication rate, making them the most challenging and unpredictable mandibular fractures to treat. Despite the evolution in the treatment of maxillofacial trauma and fixation methods, no single treatment modality has been revealed to be ideal for mandibular angle fractures. Several methods of internal fixation have been studied with great variation in complications rates, especially postoperative infections. Recently, new studies have shown reduction of postsurgical complications rates using three-dimensional plates to treat mandibular angle fractures. Nevertheless, only few surgeons have used this type of plate for the treatment of mandibular angle fractures. The aim of this clinical report was to describe a case of a patient with a mandibular angle fracture treated by an intraoral approach and a three-dimensional rectangular grid miniplate with 4 holes, which was stabilized with monocortical screws. The authors show a follow-up of 8 months, without infection and with occlusal stability.