968 resultados para BONDS
Resumo:
‘Forced marriages’ involve a woman or girl being abducted and declared the ‘wife’ of her captor without her consent or her family’s consent. The practice generally occurs during wartime and the ‘wife’ is normally subjected to rape, forced impregnation and sexual slavery. Moreover, she is coerced into an intimate relationship with a man who is often the perpetrator of crimes against her and her community. While forced marriages have recently been recognised as a crime against humanity, this Article contends that this does not constitute full recognition of the destructive nature of forced marriages. Instead, this Article mirrors and extends the Akayesu decision that rape can be used as a tool of genocide and maintains that forced marriages can also be a form of genocide.
Resumo:
Graphene-based resonators are envisioned to build the ultimate limit of two-dimensional nanoelectromechanical system due to their ultrasensitive detection of mass, force, pressure and charge. However, such application has been greatly impeded by their extremely low quality factor. In the present work, we explore, using the large-scale molecular dynamics simulation, the possibility of tailoring the resonance properties of a bilayer graphene sheet (GS) with interlayer sp3 bonds. For the bilayer GS resonator with interlayer sp3 bonds, we discovered that the sp3 bonds can either degrade or enhance the resonance properties of the resonator depending on their density and location. It is found that the distribution of sp3 bonds only along the edges of either pristine or hydrogenated bilayer GS, leads to a greatly enhanced quality factor. A quality factor of ~1.18×105 is observed for a 3.07×15.31 nm2 bilayer GS resonator with sp3 bonds, which is more than 30 times larger comparing with that of a pristine bilayer GS. The present study demonstrates that the resonance properties of a bilayer GS resonator can be tuned by introducing sp3 bonds. This finding provides a useful guideline for the synthesis of the bilayer GS for its application as a resonator component.
Resumo:
Phospholipids are the key structural component of cell membranes, and recent advances in electrospray ionization mass spectrometry provide for the fast and efficient analysis of these compounds in biological extracts.1-3 The application of electrospray ionization tandem mass spectrometry (ESI-MS/MS) to phospholipid analysis has demonstrated several key advantages over the more traditional chromatographic methods, including speed and greater structural information.4 For example, the ESI-MS/MS spectrum of a typical phospholipidsparticularly in negative ion modesreadily identifies the carbon chain length and the degree of unsaturation of each of the fatty acids esterified to the parent molecule.5 A critical limitation of conventional ESI-MS/MS analysis, however, is the inability to uniquely identify the position of double bonds within the fatty acid chains. This is especially problematic given the importance of double bond position in determining the biological function of lipid classes.6 Previous attempts to identify double bond position in intact phospholipids using mass spectrometry employ either MS3 or offline chemical derivatization.7-11 The former method requires specialized instrumentation and is rarely applied, while the latter methods suffer from complications inherent in sample handling prior to analysis. In this communication we outline a novel on-line approach for the identification of double bond position in intact phospholipids. In our method, the double bond(s) present in unsaturated phospholipids are cleaved by ozonolysis within the ion source of a conventional ESI mass spectrometer to give two chemically induced fragment ions that may be used to unambiguously assign the position of the double bond. This is achieved by using oxygen as the electrospray nebulizing gas in combination with high electrospray voltages to initiate the formation of an ozoneproducing.
Resumo:
Some of the oldest surviving examples of human creativity are items connected to death rituals. Despite the complexity of historical death rituals, the visceral sensations of grief are largely repressed or ignored in contemporary society – but where social ritual falters, art attempts to fill the gap. This catalogue essay was written to accompany Karike Ashworth's contemporary art exhibition, 'Lamentation', an exploration of grief, at The Hold Artspace in Brisbane.
Resumo:
The enactment of learning to become a science teacher in online mode is an emotionally charged experience. We attend to the formation, maintenance and disruption of social bonds experienced by online preservice science teachers as they shared their emotional online learning experiences through blogs, or e-motion diaries, in reaction to videos of face-to-face lessons. A multi-theoretic framework drawing on microsociological perspectives of emotion informed our hermeneutic interpretations of students’ first-person accounts reported through an e-motion diary. These accounts were analyzed through our own database of emotion labels constructed from the synthesis of existing literature on emotion across a range of fields of inquiry. Preservice science teachers felt included in the face-to-face group as they watched videos of classroom transactions. The strength of these feelings of social solidarity were dependent on the quality of the video recording. E-motion diaries provided a resource for interactions focused on shared emotional experiences leading to formation of social bonds and the alleviation of feelings of fear, trepidation and anxiety about becoming science teachers. We offer implications to inform practitioners who wish to improve feelings of inclusion amongst their online learners in science education.
Resumo:
Background: Disulphide bridges are well known to play key roles in stability, folding and functions of proteins. Introduction or deletion of disulphides by site-directed mutagenesis have produced varying effects on stability and folding depending upon the protein and location of disulphide in the 3-D structure. Given the lack of complete understanding it is worthwhile to learn from an analysis of extent of conservation of disulphides in homologous proteins. We have also addressed the question of what structural interactions replaces a disulphide in a homologue in another homologue. Results: Using a dataset involving 34,752 pairwise comparisons of homologous protein domains corresponding to 300 protein domain families of known 3-D structures, we provide a comprehensive analysis of extent of conservation of disulphide bridges and their structural features. We report that only 54% of all the disulphide bonds compared between the homologous pairs are conserved, even if, a small fraction of the non-conserved disulphides do include cytoplasmic proteins. Also, only about one fourth of the distinct disulphides are conserved in all the members in protein families. We note that while conservation of disulphide is common in many families, disulphide bond mutations are quite prevalent. Interestingly, we note that there is no clear relationship between sequence identity between two homologous proteins and disulphide bond conservation. Our analysis on structural features at the sites where cysteines forming disulphide in one homologue are replaced by non-Cys residues show that the elimination of a disulphide in a homologue need not always result in stabilizing interactions between equivalent residues. Conclusion: We observe that in the homologous proteins, disulphide bonds are conserved only to a modest extent. Very interestingly, we note that extent of conservation of disulphide in homologous proteins is unrelated to the overall sequence identity between homologues. The non-conserved disulphides are often associated with variable structural features that were recruited to be associated with differentiation or specialisation of protein function.
Resumo:
Weak interactions between bromine, sulphur, and hydrogen are shown to stabilize 2D supramolecular monolayers at the liquid–solid interface. Three different thiophene-based semiconducting organic molecules assemble into close-packed ultrathin ordered layers. A combination of scanning tunneling microscopy (STM) and density functional theory (DFT) elucidates the interactions within the monolayer. Electrostatic interactions are identified as the driving force for intermolecular Br⋯Br and Br⋯H bonding. We find that the S⋯S interactions of the 2D supramolecular layers correlate with the hole mobilities of thin film transistors of the same materials.
Resumo:
X-ray absorpion near edge structure (xanes) of copper compounds with copper in 1+, 2+ and 3+ states has been studied. Extended x-ray absorption fine structure (exafs) has been employed to determine bond distances and coordination numbers in several model copper compounds. Employing bothxanes andexafs, the structure of the copper complex formed by the micro-organismPseudomonas aeruginosa has been shown to be square-planar with the Cu-O distance close to that in cupric glucuronates and cupric acetylacetonate.exafs has been shown to be useful for studying metal-metal bonds in copper carboxylates.
Resumo:
The basic cyclic hexapeptide conformations which accommodate hydrogen bonded β and γ turns in the backbone have been worked out using stereochemical criteria and energy minimization procedures. It was found that cyclic hexapeptides can be made up of all possible combinations of 4 ± 1 hydrogen bonded types I, I', II and II' β turns, giving rise to symmetric conformations having twofold and inversion symmetries as well as nonsymmetric structures. Conformations having exclusive features of 3 ± 1 hydrogen bonded γ turns were found to be possible in threefold and S6 symmetric cyclic hexapeptides. The results show that the cyclic hexapeptides formed by the linking of two β turn tripeptide fragments differ mainly in (a) the hydrogen bonding scheme present in the β turn tripeptides and (b) the conformation at the α-carbon atoms where the two tripeptide fragments link. The different hydrogen bonding schemes found in the component β turns are: 1) a β turn with only a 4 ± 1 hydrogen bond, 2) a type I or I' β turn with 4 ± 1 and 3 ± 1 hydrogen bonds occurring in a bifurcated form and 3) a type II or II' β turn having both the 4 ± 1 and the 3 ± 1 hydrogen bonds with the same acceptor oxygen atom. The conformation at the linking α-carbon atoms was found to lie either in the extended region or in the 3 ± 1 hydrogen bonded γ turn or inverse γ turn regions. Further, the threefold and the S6 symmetric conformations have three γ turns interleaved by three extended regions or three inverse γ turns, respectively. The feasibility of accommodating alanyl residues of both isomeric forms in the CHP minima has been explored. Finally, the available experimental data are reviewed in the light of the present results.
Resumo:
X-ray crystal structure analysis of 7-methoxycoumarin reveals that the reactive double bonds are rotated by about 65° with respect to each other, the centre-to-centre distance between the double bonds being 3.83 Å. In spite of this unfavourable arrangement, photodimerization occurs in the crystalline state yielding the syn-head-tail dimer as the only product. Lattice energy calculations on ground-state molecules in crystals throw light on the mechanism of the reaction.